精英家教網 > 高中數學 > 題目詳情

函數y=|x+1|-|x-1|的最大值是________.

2
分析:利用表示數軸上的 x到-1的距離減去它到1的距離,求得它的最大值等于2即可.
解答:解:∵|x+1|-|x-1|表示數軸上的 x到-1的距離減去它到1的距離,
最大值等于2,
故答案為:2.
點評:本題考查絕對值不等式,絕對值的意義,函數的值域.利用絕對值的幾何意義求出|x+1|-|x-1|的最大值是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

函數y=
x-1
+
1
lg(2-x)
的定義域是( 。
A、(1,2)
B、[1,4]
C、[1,2)
D、(1,2]

查看答案和解析>>

科目:高中數學 來源: 題型:

關于下列命題:
①若函數y=x+1的定義域是{x|x≤0},則它的值域是{y|y≤1};
②若函數y=
1
x
的定義域是{x|x>2},則它的值域是{y|y<
1
2
}

③若函數y=x2的值域是{y|0≤y≤4},則它的定義域不一定是{x|-2≤x≤2};
④若函數y=x-2的值域是{y|y≤4,y∈N+},則它的定義域是{x|x≥
1
2
}

其中不正確的命題的序號是
②④
②④
( 注:把你認為不正確的命題的序號都填上).

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=|x-1|的最小值為0,函數y=|x-1|+|x-2|的最小值為1,函數y=|x-1|+|x-2|+|x-3|的最小值為2,則函數y=|x-1|+|x-2|+…+|x-10|的最小值為
25
25

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•濟南三模)下列正確命題的序號是
(2)(3)
(2)(3)

(1)“m=-2”是直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直的必要不充分條件;
(2)?a∈R,使得函數y=|x+1|+|x+a|是偶函數;
(3)不等式:
1
2
•1
1
1
1
2
,
1
3
•(1+
1
3
)
1
2
•(
1
2
+
1
4
)
,
1
4
•(1+
1
3
+
1
5
)
1
3
•(
1
2
+
1
4
+
1
6
)
,…,由此猜測第n個不等式為
1
n+1
(1+
1
3
+
1
5
+
…+
1
2n-1
)
1
n
•(
1
2
+
1
4
+
1
6
)
…+
1
2n
)

(4)若二項式(x+
2
x2
)n
的展開式中所有項的系數之和為243,則展開式中x-4的系數是40.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=
x+1
的定義域是(  )
A、(-∞,+∞)
B、[-1,+∞)
C、[0,+∞]
D、(-1,+∞)

查看答案和解析>>

同步練習冊答案