已知函數(shù),定義使f(1)•f(2)…f(k)為整數(shù)的數(shù)k(k∈N*)叫做企盼數(shù),則在區(qū)間[1,2011]內(nèi)這樣的企盼數(shù)共有    個(gè).
【答案】分析:由已知中函數(shù)f(n)=logn+1(n+2)(n∈N*),由對(duì)數(shù)運(yùn)算的性質(zhì)易得f(1)•f(2)…f(k)=log2(k+2),若其值為整數(shù),則k+2=2n(n∈Z),結(jié)合k∈[1,2011],我們易得到滿足條件的數(shù)的個(gè)數(shù).
解答:解:∵函數(shù)f(n)=logn+1(n+2)(n∈N*),
∴f(1)=log23,
f(2)=log34

f(k)=logk+1(k+2),
∴f(1)•f(2)…f(k)=log23•log34…logk+1(k+2)
===log2(k+2),
若f(1)•f(2)…f(k)為整數(shù)
則k+2=2n(n∈Z)
又∵k∈[1,2011],
故k∈{2,6,14,30,62,126,254,510,1022}
故答案為:9.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是對(duì)數(shù)的運(yùn)算性質(zhì),其中用換底公式logab=求得(1)•f(2)…f(k)=log2(k+2)是解答本題的關(guān)鍵,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式,定義使f(1)•f(2)…f(k)為整數(shù)的數(shù)k(k∈N*)叫做企盼數(shù),則在區(qū)間[1,2011]內(nèi)這樣的企盼數(shù)共有________個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式.定義函數(shù)f(x)與實(shí)數(shù)m的一種符號(hào)運(yùn)算為m?f(x)=f(x)•[f(x+m)-f(x)].
(1)求使函數(shù)值f(x)大于0的x的取值范圍;
(2)若數(shù)學(xué)公式,求g(x)在區(qū)間[0,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣東省中山市高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù).定義函數(shù)f(x)與實(shí)數(shù)m的一種符號(hào)運(yùn)算為m?f(x)=f(x)•[f(x+m)-f(x)].
(1)求使函數(shù)值f(x)大于0的x的取值范圍;
(2)若,求g(x)在區(qū)間[0,4]上的最大值與最小值;
(3)是否存在一個(gè)數(shù)列{an},使得其前n項(xiàng)和.若存在,求出其通項(xiàng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:期中題 題型:填空題

已知函數(shù),定義使f(1)·f·(2)…f(k)為整數(shù)的數(shù)k(k∈N*)叫做企盼數(shù),則在區(qū)間[1,50]內(nèi)這樣的企盼數(shù)共有(    )個(gè)。

查看答案和解析>>

同步練習(xí)冊(cè)答案