精英家教網 > 高中數學 > 題目詳情
已知向量
a
與向量
b
的夾角為120°,若(
a
+
b
)⊥(
a
-2
b
)
|
a
|=2
,則
b
a
上的投影為
 
考點:數量積判斷兩個平面向量的垂直關系
專題:平面向量及應用
分析:因為向量
a
與向量
b
的夾角為120°,所以
b
a
上的投影為|
b
|cos1200=-
1
2
|
b
|
,問題轉化為求|
b
|
解答: 解:因為向量
a
與向量
b
的夾角為120°,
所以
b
a
上的投影為|
b
|cos1200=-
1
2
|
b
|

問題轉化為求|
b
|
,
因為(
a
+
b
)⊥(
a
-2
b
)?(
a
+
b
)•(
a
-2
b
)=0?2|
b
|2-|
b
|-4=0
,
|
b
|=
33
+1
4
,
所以
b
a
上的投影為-
33
+1
8

故答案為:-
33
+1
8
點評:本題考查
b
a
上的投影的求法,是基礎題,解題時要認真審題,注意向量垂直的性質的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知圓心在x軸上的圓C與x軸交于兩點A(1,0),B(5,0),此圓的標準方程為( 。
A、(x-3)2+y2=4
B、(x-3)2+(y-1)2=4
C、(x-1)2+(y-1)2=4
D、(x+1)2+(y+1)2=4

查看答案和解析>>

科目:高中數學 來源: 題型:

某公司的廣告費支出x與銷售y(單位:萬元)之間有下列對應數據:
x 2 4 5 6 8
  y30 40 60 50 70
若y關于x的線性回歸方程為y=6.5x+a,則銷售額為115萬元時廣告費大約是( 。┤f元.
A、14B、15C、16D、17

查看答案和解析>>

科目:高中數學 來源: 題型:

把函數y=-2x2+4x+1的圖象向左平移2個單位,再向上平移3個單位,所得圖象的函數關系式為( 。
A、y=-2(x-1)2+6
B、y=-2(x-1)2-6
C、y=-2(x+1)2+6
D、y=-2(x+1)2-6

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)、g(x)分別是(-a,a)上的奇函數和偶函數,求證:f(x)•g(x)是(-a,a)上的奇函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=(
1
3
 -x2+4的單調遞減區(qū)間是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

若f(x)=ln(x2-2(1-a)x+24)在(-∞,4]上是減函數,求a的范圍
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=10,CD=6,則sinB的值為(  )
A、0
B、
3
5
C、
2
5
D、
4
5

查看答案和解析>>

科目:高中數學 來源: 題型:

定義集合運算:A?B={z|z=xy,x∈A,y∈B},設A={0,1},B={2,3},則集合A?B的所有元素之和為( 。
A、0B、4C、5D、6

查看答案和解析>>

同步練習冊答案