分析 根據(jù)f(x)是定義在R上的奇函數(shù),可得f(0)=0,f(-x)=-f(x),x>0時(shí),f(x)=-x2+x+1,那么x<0時(shí),-x>0,帶入f(x)即可求解..
解答 解:由題意:f(x)是定義在R上的奇函數(shù),可得f(0)=0,f(-x)=-f(x)
當(dāng)x>0時(shí),f(x)=-x2+x+1,那么x<0時(shí),-x>0,
則有:f(-x)=-x2-x+1,
∵f(x)是R上的奇函數(shù),即f(-x)=-f(x)
∴f(-x)=-x2-x+1=-f(x)
即f(x)=x2+x-1,
且f(0)=0.
∴f(x)的解析式f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x+1,(x>0)}\\{0,(x=0)}\\{{x}^{2}+x-1,(x<0)}\end{array}\right.$.
點(diǎn)評 本題考查了分段函數(shù)解析式的求法,利用了奇函數(shù)的性質(zhì),屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com