【題目】某學生興趣小組隨機調查了某市100天中每天的空氣質量等級和當天到某公園鍛煉的人次,整理數(shù)據(jù)得到下表(單位:天):
鍛煉人次 空氣質量等級 | [0,200] | (200,400] | (400,600] |
1(優(yōu)) | 2 | 16 | 25 |
2(良) | 5 | 10 | 12 |
3(輕度污染) | 6 | 7 | 8 |
4(中度污染) | 7 | 2 | 0 |
(1)分別估計該市一天的空氣質量等級為1,2,3,4的概率;
(2)求一天中到該公園鍛煉的平均人次的估計值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);
(3)若某天的空氣質量等級為1或2,則稱這天“空氣質量好”;若某天的空氣質量等級為3或4,則稱這天“空氣質量不好”.根據(jù)所給數(shù)據(jù),完成下面的2×2列聯(lián)表,并根據(jù)列聯(lián)表,判斷是否有95%的把握認為一天中到該公園鍛煉的人次與該市當天的空氣質量有關?
人次≤400 | 人次>400 | |
空氣質量好 | ||
空氣質量不好 |
附:,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
【答案】(1)該市一天的空氣質量等級分別為、、、的概率分別為、、、;(2);(3)有,理由見解析.
【解析】
(1)根據(jù)頻數(shù)分布表可計算出該市一天的空氣質量等級分別為、、、的概率;
(2)利用每組的中點值乘以頻數(shù),相加后除以可得結果;
(3)根據(jù)表格中的數(shù)據(jù)完善列聯(lián)表,計算出的觀測值,再結合臨界值表可得結論.
(1)由頻數(shù)分布表可知,該市一天的空氣質量等級為的概率為,等級為的概率為,等級為的概率為,等級為的概率為;
(2)由頻數(shù)分布表可知,一天中到該公園鍛煉的人次的平均數(shù)為
(3)列聯(lián)表如下:
人次 | 人次 | |
空氣質量不好 | ||
空氣質量好 |
,
因此,有的把握認為一天中到該公園鍛煉的人次與該市當天的空氣質量有關.
科目:高中數(shù)學 來源: 題型:
【題目】PM2.5是空氣質量的一個重要指標,我國PM2.5標準采用世衛(wèi)組織設定的最寬限值,即PM2.5日均值在35μg/m3以下空氣質量為一級,在35μg/m3~75μg/m3之間空氣質量為二級,在75μg/m3以上空氣質量為超標.如圖是某市2019年12月1日到10日PM2.5日均值(單位:μg/m3)的統(tǒng)計數(shù)據(jù),則下列敘述不正確的是( )
A.這10天中,12月5日的空氣質量超標
B.這10天中有5天空氣質量為二級
C.從5日到10日,PM2.5日均值逐漸降低
D.這10天的PM2.5日均值的中位數(shù)是47
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設有下列四個命題:
p1:兩兩相交且不過同一點的三條直線必在同一平面內.
p2:過空間中任意三點有且僅有一個平面.
p3:若空間兩條直線不相交,則這兩條直線平行.
p4:若直線l平面α,直線m⊥平面α,則m⊥l.
則下述命題中所有真命題的序號是__________.
①②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】石雕工藝承載著幾千年的中國石雕文化,隨著科技的發(fā)展,機器雕刻產品越來越多.某石雕廠計劃利用一個圓柱形的石材(如圖1)雕刻制作一件工藝品(如圖2),該作品的上方是一個球體,下方是一個正四棱柱,經測量,圓柱形石材的底面半徑米,高米,制作要求如下:首先需將石材切割為體積相等的兩部分(分別稱為圓柱A和圓柱B),要求切面與原石材的上、下底面平行(不考慮損耗),然后將圓柱A切割打磨為一個球體,將圓柱B切割打磨為一個長方體,則加工打磨后所得工藝品的體積的最大值為________立方米.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】半正多面體亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學的對稱美.如圖,將正方體沿交于一頂點的三條棱的中點截去一個三棱錐,如此共可截去八個三棱錐,得到一個有十四個面的半正多面體,它們的棱長都相等,其中八個為正三角形,六個為正方形,稱這樣的半正多面體為二十四等邊體.若二十四等邊體的棱長為2,則其體積為______;若其各個頂點都在同一個球面上,則該球的表面積為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的短軸長為2,離心率為.
(1)求橢圓的標準方程;
(2)過點且不過點的直線與橢圓交于,兩點,直線與直線交于點.
(i)若軸,求直線的斜率;
(ii)判斷直線與直線的位置關系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】垃圾種類可分為可回收垃圾,干垃圾,濕垃圾,有害垃圾,為調查中學生對垃圾分類的了解程度某調查小組隨機抽取了某市的100名高中生,請他們指出生活中若干項常見垃圾的種類,把能準確分類不少于3項的稱為“比較了解”少于三項的稱為“不太了解”調查結果如下:
0項 | 1項 | 2項 | 3項 | 4項 | 5項 | 5項以上 | |
男生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
女生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下列聯(lián)表并判斷是否有95%的把握認為了解垃圾分類與性別有關?
比較了解 | 不太了解 | 合計 | |
男生 | __________ | __________ | __________ |
女生 | __________ | __________ | __________ |
合計 | __________ | __________ | __________ |
(2)從能準確分類不少于3項的高中生中,按照男、女生采用分層抽樣的方法抽取9人的樣本.
(i)求抽取的女生和男生的人數(shù);
(ii)從9人的樣本中隨機抽取兩人,求男生女生都有被抽到的概率.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com