已知數(shù)列{log2(an-1)},(n∈N*)為等差數(shù)列,且a1=3,a3=9.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn
分析:(1)設等差數(shù)列{log2(an-1)}的公差為d.由a1=3,a3=9可得2(log22+d)=log22+log28,可求d,由等差數(shù)列的通項公式可求log2(an-1),進而可求an
(2)由(1)可得an=2n+1.利用分組求和,結合等比數(shù)列的求和公式可求Sn
解答:解:(1)設等差數(shù)列{log2(an-1)}的公差為d.
由a1=3,a3=9得,2(log22+d)=log22+log28,解得d=1.
所以log2(an-1)=1+(n-1)×1=n,
∴an=2n+1.
(2)∵an=2n+1.
∴Sn=a1+a2+…+an=(2+1)+(22+1)+…+(2n+1)
=(2+22+…+2n)+n=
2(1-2n)
1-2
+n
=2n+1+n-2
點評:本題主要考查了等差數(shù)列的通項公式的應用,數(shù)列求和的分組求和方法的應用及等比數(shù)列的求和公式的應用,屬于基礎試題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,且a1=3,a3=9.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)證明
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,且a1=3,a2=5,則
lim
n→∞
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)=( 。
A、2
B、
3
2
C、1
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,且a1=3,a3=9
(1)求數(shù)列{an}的通項公式;
(2)求使
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
2012
2013
成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{log2(an-1)}(n∈N+)為等差數(shù)列,且a1=3,a2=5,則
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•撫州模擬)已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,且a1=3,a2=5,則
lim
n→∞
(
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)
=
1
1

查看答案和解析>>

同步練習冊答案