已知點,,若點在函數(shù)的圖象上,則使得的面積為2的點的個數(shù)為
A.4 B.3 C.2 D.1
科目:高中數(shù)學 來源:2010-2011學年廣東省江門市鶴山一中高二(下)期中數(shù)學試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年廣東省揭陽一中高一(下)第二次段考數(shù)學試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2011年人教A版模塊考試數(shù)學試卷5(必修4)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2010年廣東省高考各地一模試卷匯集01:三角函數(shù)與平面向量(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三第五次階段考試理科數(shù)學試卷(解析版) 題型:解答題
已知點(),過點作拋物線的切線,切點分別為、(其中).
(Ⅰ)若,求與的值;
(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓與直線相切,求圓的方程;
(Ⅲ)若直線的方程是,且以點為圓心的圓與直線相切,
求圓面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運用。直線與圓的位置關(guān)系的運用。
中∵直線與曲線相切,且過點,∴,利用求根公式得到結(jié)論先求直線的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線的方程是,,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值
(Ⅰ)由可得,. ------1分
∵直線與曲線相切,且過點,∴,即,
∴,或, --------------------3分
同理可得:,或----------------4分
∵,∴,. -----------------5分
(Ⅱ)由(Ⅰ)知,,,則的斜率,
∴直線的方程為:,又,
∴,即. -----------------7分
∵點到直線的距離即為圓的半徑,即,--------------8分
故圓的面積為. --------------------9分
(Ⅲ)∵直線的方程是,,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即, ………10分
∴
,
當且僅當,即,時取等號.
故圓面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com