已知點(diǎn)M(1,-1)與點(diǎn)N(-1,1),動(dòng)點(diǎn)P滿足:直線MP與NP的斜率之積等于-
1
3
.設(shè)直線MP與NP分別與直線x=3相交于A,B兩點(diǎn),若點(diǎn)P使得△PMN與△PAB的面積相等,則點(diǎn)P的橫坐標(biāo)是多少?
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)點(diǎn)M(1,-1)與點(diǎn)N(-1,1),動(dòng)點(diǎn)P滿足:直線MP與NP的斜率之積等于-
1
3
,得到關(guān)系式,化簡(jiǎn)后即為動(dòng)點(diǎn)P的軌跡方程,再假設(shè)存在,由面積公式得:
1
2
|PA||PB|sin∠APB=
1
2
|PM||PN|sin∠MPN,根據(jù)角相等消去三角函數(shù)得比例式,最后得到關(guān)于點(diǎn)P的縱坐標(biāo)的方程,解之即得.
解答: 解:設(shè)點(diǎn)P的坐標(biāo)為(x,y)
∵點(diǎn)M(1,-1)與點(diǎn)N(-1,1),動(dòng)點(diǎn)P滿足:直線MP與NP的斜率之積等于-
1
3

y-1
x+1
y+1
x-1
=-
1
3
,
化簡(jiǎn)得x2+3y2=4(x≠±1).
即動(dòng)點(diǎn)P軌跡方程為x2+3y2=4(x≠±1)
若存在點(diǎn)P使得△PAB與△PMN的面積相等,設(shè)點(diǎn)P的坐標(biāo)為(x0,y0
1
2
|PA||PB|sin∠APB=
1
2
|PM||PN|sin∠MPN
∵sin∠APB=sin∠MPN,
|PA|
|PM|
=
|PN|
|PB|

|x0+1|
|3-x0|
=
|3-x0|
|x0-1|

即(3-x02=|x02-1|,解得x0=
5
3

∵x02+3y02=4,∴y0
33
9

故存在點(diǎn)P使得△PAB與△PMN的面積相等,此時(shí)點(diǎn)P的坐標(biāo)為(
5
3
,±
33
9
).
點(diǎn)評(píng):本題主要考查了軌跡方程、三角形中的幾何計(jì)算等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三個(gè)正數(shù)a,b,c,滿足b<a+c≤2b,a<b+c≤2a,則
a
b
的取值范圍是( 。
A、(
2
3
3
2
B、(
1
3
2
3
C、(0,
3
2
D、(
2
3
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:x2-
y2
2
=1
,過(guò)點(diǎn)P(-1,-2)的直線交C于A,B兩點(diǎn),且點(diǎn)P為線段AB的中點(diǎn).
(1)求直線AB的方程;
(2)求弦長(zhǎng)|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線L:y=kx+1與橢圓C:ax2+y2=2(a>1)交于A、B兩點(diǎn),以O(shè)A、OB為鄰邊作平行四邊形OAPB(O為坐標(biāo)原點(diǎn)).
(1)若k=1,且四邊形OAPB為矩形,求a的值;
(2)若a=2,當(dāng)k變化時(shí)(k∈R),求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率e=
1
2
,短軸長(zhǎng)為2
3

(1)求橢圓C的方程;
(2)從定點(diǎn)M(0,2)任作直線l與橢圓C交于兩個(gè)不同的點(diǎn)A、B,記線段AB的中點(diǎn)為P,試求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F(1,0),離心率e=
2
2
,A,B是橢圓上的動(dòng)點(diǎn).
(Ⅰ)求橢圓標(biāo)準(zhǔn)方程;
(Ⅱ)若直線OA與OB的斜率乘積kOA•kOB=-
1
2
,動(dòng)點(diǎn)P滿足
OP
=
OA
OB
,(其中實(shí)數(shù)λ為常數(shù)).問(wèn)是否存在兩個(gè)定點(diǎn)F1,F(xiàn)2,使得|PF1|+|PF2|為定值?若存在,求F1,F(xiàn)2的坐標(biāo),若不存在,說(shuō)明理由;
(Ⅲ)若點(diǎn)A在第一象限,且點(diǎn)A,B關(guān)于原點(diǎn)對(duì)稱,點(diǎn)A在x軸上的射影為C,連接BC并延長(zhǎng)交橢圓于點(diǎn)D.證明:AB⊥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓M的中心原點(diǎn)O,點(diǎn)F(-1,0)是它的一個(gè)焦點(diǎn),直線L過(guò)點(diǎn)F與橢圓M交于P、Q兩點(diǎn),當(dāng)直線L的斜率不存在時(shí),
OP
OQ
=
1
2

(1)求橢圓M的方程;
(2)設(shè)A、B、C是橢圓M上的不同三點(diǎn),且
OA
+
OB
+
OC
=0
,證明直線AB與OC的斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知線段AB的端點(diǎn)B的坐標(biāo)是(1,2),端點(diǎn)A在圓(x+1)2+y2=4上運(yùn)動(dòng),點(diǎn)M是AB的中點(diǎn).
(1)若點(diǎn)M的軌跡為曲線C,求此曲線的方程;
(2)設(shè)直線l:x+y+3=0,求曲線C上的點(diǎn)到直線l距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),拋物線C:y2=2px(p>0)的準(zhǔn)線為l,焦點(diǎn)為F,過(guò)F斜率為
3
的直線與拋物線C相交于A,B兩點(diǎn),直線AO與l相交于D,若|AF|>|BF|,則
|BD|
|OF|
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案