某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為2萬元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬元)滿足R(x)=
-0.4x2+5.2x(0≤x≤5)
16(x>5)
,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本)
(2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?
分析:(1)利用總成本=固定成本+生產(chǎn)成本,利潤=銷售收入-總成本,即可得出y=f(x)=R(x)-G(x)=
-0.4x2+5.2x-2.8-2x,(0≤x≤5)
16-2.8-2x,(x>5)

(2)由(1),利用分段函數(shù)的性質(zhì)、二次函數(shù)與一次函數(shù)的單調(diào)性即可得出
解答:解:(1)由題意可得y=f(x)=R(x)-G(x)=
-0.4x2+5.2x-2.8-2x,(0≤x≤5)
16-2.8-2x,(x>5)

(2)①當(dāng)0≤x≤5時,f(x)=-0.4x2+3.2x-2.8=-0.4(x-4)2+3.6,可得:當(dāng)x=4時,函數(shù)f(x)取得最大值3.6.
②當(dāng)x>5時,f(x)=13.2-2x<13.2-2×5=3.2.
綜上①②可得:當(dāng)且僅當(dāng)工廠生產(chǎn)x=4百臺時,可使盈利最多為3.6萬元.
點評:本題綜合考查了總成本=固定成本+生產(chǎn)成本、利潤=銷售收入-總成本、分段函數(shù)的性質(zhì)、二次函數(shù)與一次函數(shù)的單調(diào)性等基礎(chǔ)知識與基本方法,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬元)滿足R(x)=
-0.4x2+4.2x(0≤x≤5)
11,(x>5)
,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本);
(2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬元)滿足R(x)=
-0.4x2+4.2x(0≤x≤5)
11(x>5)
,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本);
(2)要使工廠有盈利,求產(chǎn)量x的范圍;
(3)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為2萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本);銷售收入R(x)(萬元)滿足:R(x)=
-0.4x2+4.2x-0.8(0≤x≤5)
10.2(x>5)
,假定該產(chǎn)品產(chǎn)銷平衡,那么根據(jù)上述統(tǒng)計規(guī)律:
(Ⅰ)要使工廠有贏利,產(chǎn)量x應(yīng)控制在什么范圍?
(Ⅱ)工廠生產(chǎn)多少臺產(chǎn)品時,可使贏利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬元)滿足R(x)=
-0.4x2+4.2x
11
(0≤x<5)
(x≥5)
,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)分別寫出G(x)和利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本);
(2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?并求出此時每臺產(chǎn)品的售價.

查看答案和解析>>

同步練習(xí)冊答案