【題目】(題文)已知函數(shù),其中為正實(shí)數(shù).

(1)若函數(shù)處的切線斜率為2,求的值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若函數(shù)有兩個(gè)極值點(diǎn),求證:

【答案】(1)1;(2)見解析;(3)見解析

【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)幾何意義得,解得的值;(2)先求導(dǎo)數(shù),再根據(jù)導(dǎo)函數(shù)是否變號分類討論,最后根據(jù)導(dǎo)函數(shù)符號確定單調(diào)區(qū)間(3)先根據(jù)韋達(dá)定理得,再化簡,進(jìn)而化簡所證不等式為,最后利用導(dǎo)函數(shù)求函數(shù)單調(diào)性,進(jìn)而確定最小值,證得結(jié)論

試題解析:(1)因?yàn)?/span>,所以

,所以的值為1.

(2) ,函數(shù)的定義域?yàn)?/span>,

,即,則,此時(shí)的單調(diào)減區(qū)間為;

,即,則的兩根為,

此時(shí)的單調(diào)減區(qū)間為,,

單調(diào)減區(qū)間為

(3)由(2)知,當(dāng)時(shí),函數(shù)有兩個(gè)極值點(diǎn),且

因?yàn)?/span>

要證,只需證

構(gòu)造函數(shù),則,

上單調(diào)遞增,又,且在定義域上不間斷,

由零點(diǎn)存在定理,可知上唯一實(shí)根, 且

上遞減, 上遞增,所以的最小值為

因?yàn)?/span>,

當(dāng)時(shí), ,則,所以恒成立.

所以,所以,得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行促銷活動(dòng),有兩個(gè)摸獎(jiǎng)箱,箱內(nèi)有一個(gè)“”號球,兩個(gè)“”號球,三個(gè)“”號球、四個(gè)無號球,箱內(nèi)有五個(gè)“”號球,五個(gè)“”號球,每次摸獎(jiǎng)后放回,每位顧客消費(fèi)額滿元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),消費(fèi)額滿元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),摸得有數(shù)字的球則中獎(jiǎng),“”號球獎(jiǎng)元,“”號球獎(jiǎng)元,“”號球獎(jiǎng)元,摸得無號球則沒有獎(jiǎng)金。

(1)經(jīng)統(tǒng)計(jì),顧客消費(fèi)額服從正態(tài)分布,某天有位顧客,請估計(jì)消費(fèi)額(單位:元)在區(qū)間內(nèi)并中獎(jiǎng)的人數(shù).(結(jié)果四舍五入取整數(shù))

附:若,則.

(2)某三位顧客各有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),求其中中獎(jiǎng)人數(shù)的分布列.

(3)某顧客消費(fèi)額為元,有兩種摸獎(jiǎng)方法,

方法一:三次箱內(nèi)摸獎(jiǎng)機(jī)會(huì);

方法二:一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì).

請問:這位顧客選哪一種方法所得獎(jiǎng)金的期望值較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+x2﹣2ax+1(a為常數(shù))
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對任意的a∈(1, ),都存在x0∈(0,1]使得不等式f(x0)+lna>m(a﹣a2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線x軸交于不同的兩點(diǎn)A,B,曲線Γy軸交于點(diǎn)C

1)是否存在以AB為直徑的圓過點(diǎn)C?若存在,求出該圓的方程;若不存在,請說明理由;

2)求證:A,B,C三點(diǎn)的圓過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣ax,g(x)=ex﹣ax,其中a為實(shí)數(shù).
(1)若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(1,+∞)上有最小值,求a的取值范圍;
(2)若g(x)在(﹣1,+∞)上是單調(diào)增函數(shù),試求f(x)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校研究性學(xué)習(xí)小組調(diào)查學(xué)生使用智能手機(jī)對學(xué)習(xí)成績的影響,部分統(tǒng)計(jì)數(shù)據(jù)如下表:

使用智能手機(jī)

不使用智能手機(jī)

總計(jì)

學(xué)習(xí)成績優(yōu)秀

4

8

12

學(xué)習(xí)成績不優(yōu)秀

16

2

18

總計(jì)

20

10

30

(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為使用智能手機(jī)對學(xué)習(xí)成績有影響?

(Ⅱ)從學(xué)習(xí)成績優(yōu)秀的12名同學(xué)中,隨機(jī)抽取2名同學(xué),求抽到不使用智能手機(jī)的人數(shù)的分布列及數(shù)學(xué)期望.

參考公式:,其中

參考數(shù)據(jù):

0.05

0,。025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的五個(gè)區(qū)域中,中心區(qū)域是一幅圖畫,現(xiàn)要求在其余四個(gè)區(qū)域中涂色,有四種顏色可供選擇.要求每個(gè)區(qū)域只涂一種顏色且相鄰區(qū)域所涂顏色不同,則不同的涂色方法種數(shù)為( )

A. 56 B. 72 C. 64 D. 84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax+bx﹣cx , 其中c>a>0,c>b>0.
(1)記集合M={(a,b,c)|a,b,c不能構(gòu)成一個(gè)三角形的三條邊長,且a=b},則(a,b,c)∈M所對應(yīng)的f(x)的零點(diǎn)的取值集合為
(2)若a,b,c是△ABC的三條邊長,則下列結(jié)論正確的是 . (寫出所有正確結(jié)論的序號)
x∈(﹣∞,1),f(x)>0;
x∈R,使ax , bx , cx不能構(gòu)成一個(gè)三角形的三條邊長;
③若△ABC為鈍角三角形,則x∈(1,2),使f(x)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)站從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶中隨機(jī)抽取10000名進(jìn)行調(diào)查,將受訪用戶按年齡分成5組:并整理得到如下頻率分布直方圖:

(1)求的值;

(2)從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶中隨機(jī)抽取一人,估計(jì)其年齡低于40歲的概率;

(3)估計(jì)春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶的平均年齡。

查看答案和解析>>

同步練習(xí)冊答案