已知函數(shù)f(x)=
x+
1
2
,x∈[0,
1
2
)
2x-1,x∈[
1
2
,2)
,若存在x1,x2,當0≤x1<x2<2時,f(x1)=f(x2),則x1f(x2)的取值范圍是(  )
A、[
2
-1
4
1
2
)
B、[
1
2
,1)
C、[
2
4
,1)
D、[
2-
2
4
1
2
)
分析:先作出函數(shù)圖象然后根據(jù)圖象,根據(jù)f(x1)=f(x2),確定x1的取值范圍然后再根據(jù)x1f(x2)=x1f(x1),轉化為求在x1的取值范圍即可.
解答:解:作出函數(shù)的圖象:
∵存在x1,x2,當0≤x1<x2<2時,f(x1)=f(x2
∴0≤x1
1
2

∵x+
1
2
在[0,
1
2
)上的最小值為
1
2

2x-1在[
1
2
,2)的最小值為
2
2
精英家教網(wǎng)
∴x1+
1
2
2
2
,x1
2
-1
2
,
2
-1
2
≤x1
1
2

∵f(x1)=x1+
1
2
,f(x1)=f(x2
∴x1f(x2)=x1f(x1)=
x
2
1
+
1
2
x1
,
設y=
x
2
1
+
1
2
x1
,(
2
-1
2
≤x1
1
2
),
則對應拋物線的對稱軸為x=-
1
4
,
∴y=
x
2
1
+
1
2
x1
,在區(qū)間[
2
-1
2
,
1
2
)上遞增,
∴當x=
1
2
時,y=
1
2
,
當x=
2
-1
2
時,y=
2-
2
4
,
即x1f(x2)的取值范圍為[
2-
2
4
1
2
).
故選:D.
點評:本題主要考查分段函數(shù)的應用,以及函數(shù)零點和方程之間的關系,利用二次函數(shù)的單調(diào)性是解決本題的關鍵,綜合性強,難度較大.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案