已知函數(shù)f(x)=lnx-x,h(x)=
lnxx

(1)求h(x)的最大值;
(2)若關(guān)于x的不等式xf(x)≥-2x2+ax-12對(duì)一切x∈(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍.
分析:(1)求導(dǎo)函數(shù),利用導(dǎo)數(shù)的正負(fù),即可確定函數(shù)的單調(diào)區(qū)間,從而可求h(x)的最大值;
(2)xf(x)≥-2x2+ax-12對(duì)一切x∈(0,+∞)恒成立,等價(jià)于xlnx-x2≥-2x2+ax-12對(duì)一切x∈(0,+∞)恒成立,分離參數(shù),求出函數(shù)的最值,即可求實(shí)數(shù)a的取值范圍.
解答:解:(1)因?yàn)?span id="uohuqgg" class="MathJye">h(x)=
lnx
x
,(x>0),所以h′(x)=
1-lnx
x2
,…(2分)
由h′(x)>0,且x>0,得0<x<e,由h′(x)<0,且x>0,x>e,…(4分)
所以函數(shù)h(x)的單調(diào)增區(qū)間是(0,e],單調(diào)減區(qū)間是[e,+∞),
所以當(dāng)x=e時(shí),h(x)取得最大值
1
e
;…(6分)
(2)因?yàn)閤f(x)≥-2x2+ax-12對(duì)一切x∈(0,+∞)恒成立,
即xlnx-x2≥-2x2+ax-12對(duì)一切x∈(0,+∞)恒成立,
亦即a≤lnx+x+
12
x
對(duì)一切x∈(0,+∞)恒成立,…(8分)
設(shè)?(x)=lnx+x+
12
x
,因?yàn)?span id="cjrgmnh" class="MathJye">?′(x)=
x2+x-12
x2
=
(x-3)(x+4)
x2
,
故?(x)在(0,3]上遞減,在[3,+∞)上遞增,?(x)min=?(3)=7+ln3,
所以a≤7+ln3.  …(10分)
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性與最值,考查恒成立問(wèn)題,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實(shí)數(shù)a,b的值:
(2)當(dāng)a<3時(shí),令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點(diǎn)P(2,f(2))處的切線方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達(dá)式和切線l的方程;
(2)當(dāng)x∈[
1
e
,e]
時(shí)(其中e=2.71828…),不等式f(x)<k恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
x2+a
(a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
(1)求直線l的方程及a的值;
(2)當(dāng)k>0時(shí),試討論方程f(1+x2)-g(x)=k的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
13
x3+x2+ax

(1)討論f(x)的單調(diào)性;
(2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,若過(guò)兩點(diǎn)(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點(diǎn)在曲線y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實(shí)數(shù),x∈R,a∈R.
(1)當(dāng)1<a<2時(shí),若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過(guò)點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案