若函數(shù)y=x•2x 且y′=0,則x=(  )
A、-
1
ln2
B、
1
ln2
C、-ln2
D、ln2
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)導(dǎo)數(shù)的基本運(yùn)算公式即可得到結(jié)論.
解答: 解:函數(shù)的導(dǎo)數(shù)為y′=2x+x•2xln2=2x (1+xln2),
由y′=0得1+xln2=0,解得x=-
1
ln2
,
故選:A
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的基本計(jì)算,要求熟練掌握常見(jiàn)函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的運(yùn)算法則.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

極坐標(biāo)方程分別為ρ=cosθ與ρ=sinθ的兩個(gè)圓的圓心距為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x|+|2-x|,若g(x)=f(x)-a的零點(diǎn)個(gè)數(shù)不為0,則a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}的前n項(xiàng)和為Sn,a2=2a1,則
S4
a4
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知任意非零實(shí)數(shù)x,y滿足3x2+4xy≤λ(x2+y2)恒成立,則實(shí)數(shù)λ的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=
1
log2(x+1)
,則f(x)的定義域?yàn)椋ā 。?/div>
A、(-1,0)
B、(-1,+∞)
C、(-1,0)∪(0,+∞)
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的程序框圖表示求算式“2×4×8×16×32”的值,則判斷框內(nèi)可以填入(  )
A、k<10B、k<20
C、k<30D、k<40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
(1)
15
sinx+
5
cosx;
(2)
3
2
cosx-
3
2
sinx;
(3)
3
sin
x
2
+cos
x
2
;
(4)
2
4
sin(
π
4
-x)+
6
4
cos(
π
4
-x);
(5)sin347°cos148°+sin77°cos58°;
(6)sin164°sin224°+sin254°sin314°;
(7)sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ);
(8)sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β);
(9)
tan
4
+tan
12
1-tan
12

(10)
sin(α+β)-2sinαcosβ
2sinαsinβ+cos(α+β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=1,nan+1=2(n+1)an+n(n+1).
(1)證明{
an
n
+1}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案