對于函數(shù)f(x)=
x1+|x|
,下列結論正確的是
 

①?x∈R,f(-x)+f(x)=0;
②?m∈(0,1)使得方程|f(x)|=m有兩個不等的實數(shù)解;
③?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個零點;
④?x1,x2,若x1≠x2,則f(x1)≠f(x2
分析:根據(jù)題意,依次分析命題:將-x代替x求出f(-x),判斷出 ①對;通過分離參數(shù),判斷出f(x)在[0,+∞)上的單調(diào)性及值域判斷出②對;通過另g(x)=0,分離出k,求出k的范圍,判斷出③錯;通過對①②的推導過程得到f(x)在R上單調(diào),判斷出④對,即可得答案.
解答:解:對于①,f(-x)=
-x
1+|x|
∴f(-x)+f(x)=0,故①對;
②,∵函數(shù)f(x)=
x
1+|x|
(x∈R)的在R上單調(diào)遞增,且值域為(-1,1)
∴函數(shù)y=|f(x)|在(-∞,0]上單調(diào)遞減,在[0,+∞)上單調(diào)遞增,且值域為[0,1)
∴?m∈(0,1),方程|f(x)|=m均有兩個不等實數(shù)根,故(2)正確;
對于③,令g(x)=0即f(x)-kx=0即k=
1
1+|x|
≤1,所以當k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上無零點,故③錯.
對于④,由①知f(x)是奇函數(shù),由②的推導知,f(x)在R上單調(diào)遞增,所以?x1,x2,若x1≠x2,則f(x1)≠f(x2
故④對.
故答案為:①②④
點評:本題考查判斷函數(shù)零點的個數(shù)常轉(zhuǎn)化為求函數(shù)的值域、對于含絕對值的函數(shù)的處理方法常利用絕對值的意義去掉絕對值轉(zhuǎn)化為分段函數(shù)處理.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為R,且對于一切實數(shù)x滿足f(x+2)=f(2-x),f(x+7)=f(7-x)
(1)若f(5)=9,求:f(-5);
(2)已知x∈[2,7]時,f(x)=(x-2)2,求當x∈[16,20]時,函數(shù)g(x)=2x-f(x)的表達式,并求出g(x)的最大值和最小值;
(3)若f(x)=0的一根是0,記f(x)=0在區(qū)間[-1000,1000]上的根數(shù)為N,求N的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義域為A,若存在非零實數(shù)t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調(diào)函數(shù).如果定義域為[0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調(diào)函數(shù),那么實數(shù)m的取值范圍是( 。
A、[-5,5]
B、[-
5
,
5
]
C、[-
10
10
]
D、[-
5
2
,
5
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2)有如下結論
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
f(x1)-f(x2)
x1-x2
>0
;
f(
x1+x2
2
)<
f(x1)+f(x2)
2

f(x)=(
1
2
)x
時,上述結論中正確的序號是(  )
A、①②B、①④C、②③D、③④

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案