(2010•湖北模擬)在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,其外接圓半徑為6,
b
1-cosB
=24,sinA+sinC=
4
3

(1)求cosB;
(2)求△ABC的面積的最大值.
分析:(1)利用正弦定理及條件
b
1-cosB
=24,可得2(1-cosB)=sinB,再利用平方關(guān)系,從而可求得cosB;
(2)利用正弦定理及條件sinA+sinC=
4
3
,可得a+c=16,利用面積公式表示面積,借助于基本不等式可求△ABC的面積的最大值.
解答:解:(1)
b
1-cosB
=24⇒
2×6sinB
1-cosB
=24
∴2(1-cosB)=sinB  (3分)
∴4(1-cosB)2=sin2B=(1-cosB)(1+cosB)
∵1-cosB≠0,
∴4(1-cosB)=1+cosB,
∴cosB=
3
5
,(6分)
(2)∵sinA+sinC=
4
3
,
a
12
+
c
12
=
4
3
,即a+c=16.
又∵cosB=
3
5
,∴sinB=
4
5
.(8分)
∴S=
1
2
acsinB=
2
5
ac≤
2
5
(
a+c
2
)
2
=
128
5
.(10分)
當(dāng)且僅當(dāng)a=c=8時(shí),Smax=
128
5
.(12分)
點(diǎn)評(píng):本題以三角形為載體,考查正弦定理的運(yùn)用,考查基本不等式,關(guān)鍵是邊角之間的互化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•湖北模擬)如圖,正方體AC1的棱長(zhǎng)為1,連接AC1,交平面A1BD于H,則以下命題中,錯(cuò)誤的命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•湖北模擬)如圖,在底面為平行四邊形的四棱錐P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,點(diǎn)E是PD的中點(diǎn).
(1)證明:AC⊥PB;
(2)證明:PB∥平面AEC;
(3)求二面角E-AC-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•湖北模擬)等比數(shù)列{an}的公比為q,則“a1>0,且q>1”是“對(duì)于任意正自然數(shù)n,都有an+1>an”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•湖北模擬)△ABC內(nèi)接于以O(shè)為圓心,半徑為1的圓,且3
OA
+4
OB
+5
OC
=
0
,則△ABC的面積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•湖北模擬)已知數(shù)列|an|滿足:an=n+1+
8
7
an+1
,且存在大于1的整數(shù)k使ak=0,m=1+
8
7
a1

(1)用k表示m(化成最簡(jiǎn)形式);
(2)若m是正整數(shù),求k與m的值;
(3)當(dāng)k大于7時(shí),試比較7(m-49)與8(k2-k-42)的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案