【題目】《漢字聽(tīng)寫(xiě)大會(huì)》不斷創(chuàng)收視新高,為了避免書(shū)寫(xiě)危機(jī),弘揚(yáng)傳統(tǒng)文化,某市大約10萬(wàn)名市民進(jìn)行了漢字聽(tīng)寫(xiě)測(cè)試.現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽(tīng)寫(xiě)測(cè)試情況,發(fā)現(xiàn)被測(cè)試市民正確書(shū)寫(xiě)漢字的個(gè)數(shù)全部在160184之間,將測(cè)試結(jié)果按如下方式分成六組:第1,第2,第6,如圖是按上述分組方法得到的頻率分布直方圖.

1)若電視臺(tái)記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第2組或第6組的概率;

2)試估計(jì)該市市民正確書(shū)寫(xiě)漢字的個(gè)數(shù)的眾數(shù)與中位數(shù);

3)已知第4組市民中有3名男性,組織方要從第4組中隨機(jī)抽取2名市同組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.

【答案】10.32 ;2)眾數(shù)是170,中位數(shù)是168.25 ;3

【解析】

1)利用頻率分布直方圖能求出被采訪人恰好在第2組或第6組的概率;

2)利用頻率分布直方圖能求出眾數(shù)和中位數(shù);

3)共50×0.126人,其中男生3人,設(shè)為ab,c,女生三人,設(shè)為d,ef,利用列舉法能求出至少有1名女性市民的概率.

1)被采訪人拾好在第2組或第6組的概率.

2)眾數(shù):;

設(shè)中位數(shù)為,則

∴中位數(shù).

3)共人,其中男生3人,設(shè)為,,,女生三人,設(shè)為,,,則任選2人,

可能為,,,,,,,,,共15種,

其中兩個(gè)全是男生的有,,共3種情況,

設(shè)事件:至少有1名女性,則至少有1名女性市民的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,求證:當(dāng)時(shí),;

2)若函數(shù)與函數(shù)有兩個(gè)不同交點(diǎn)其中,證明:存在,使得處的切線斜率與處的切線斜率相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)擬在高一下學(xué)期開(kāi)設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學(xué)生中抽取人做調(diào)查,得到列聯(lián)表:

喜歡游泳

不喜歡游泳

合計(jì)

男生

40

女生

30

合計(jì)

100

且已知在個(gè)人中隨機(jī)抽取人,抽到喜歡游泳的學(xué)生的概率為.

1)請(qǐng)完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),是否有的把握認(rèn)為喜歡游泳與性別有關(guān)?并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)某款機(jī)器零件,因?yàn)橐缶缺容^高,所以需要對(duì)生產(chǎn)的一大批零件進(jìn)行質(zhì)量檢測(cè).首先由專家根據(jù)各種系數(shù)制定了質(zhì)量指標(biāo)值,從生產(chǎn)的大批零件中選取100件作為樣本進(jìn)行評(píng)估,根據(jù)評(píng)估結(jié)果作出如圖所示的頻率分布直方圖.

1)(。└鶕(jù)直方圖求及這100個(gè)零件的樣本平均數(shù)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);

(ⅱ)以樣本估計(jì)總體,經(jīng)過(guò)專家研究,零件的質(zhì)量指標(biāo)值,試估計(jì)10000件零件質(zhì)量指標(biāo)值在內(nèi)的件數(shù);

2)設(shè)每個(gè)零件利潤(rùn)為元,質(zhì)量指標(biāo)值為,利潤(rùn)與質(zhì)量指標(biāo)值之間滿足函數(shù)關(guān)系.假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,試估算該批零件的平均利潤(rùn).(結(jié)果四舍五入,保留整數(shù))

參考數(shù)據(jù):,則,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營(yíng)一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60/盒、65/盒、80/盒、90/盒.為增加銷量,李明對(duì)這四種水果進(jìn)行促銷:一次購(gòu)買水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會(huì)得到支付款的80%

①當(dāng)x=10時(shí),顧客一次購(gòu)買草莓和西瓜各1盒,需要支付__________元;

②在促銷活動(dòng)中,為保證李明每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列中,,且,,成等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)記為數(shù)列的前項(xiàng)和,是否存在正整數(shù),使得?若存在,求出的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐S—ABCD中,底面ABCD,底面ABCD是矩形,且ESA的中點(diǎn).

1)求證:平面BED平面SAB;

2)求平面BED與平面SBC所成二面角(銳角)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,分別為的左頂點(diǎn)和上頂點(diǎn),若的中點(diǎn)的縱坐標(biāo)為.分別為的左、右焦點(diǎn).

1)求橢圓的方程;

2)設(shè)直線交于兩點(diǎn),的重心分別為.若原點(diǎn)在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案