在一次演講比賽中,6位評委對一名選手打分的莖葉圖如圖所示,若去掉一個最高分和一個最低分,得到一組數(shù)據(jù)xi(1≤i≤4),在如圖所示的程序框圖中,x是這4個數(shù)據(jù)的平均數(shù),則輸出的v的值為
 

考點(diǎn):程序框圖,莖葉圖
專題:概率與統(tǒng)計,算法和程序框圖
分析:算法的功能是求莖葉圖中中間4個數(shù)據(jù)的方差,由莖葉圖求出中間4個數(shù),求出平均數(shù)
.
x
,代入方差計算公式計算.
解答: 解:由程序框圖知:算法的功能是求莖葉圖中中間4個數(shù)據(jù)的方差,
∵莖葉圖的6個數(shù)分別為77、78、80、82、84、91,
去掉一個最高分和一個最低分,得到78、80、82、84,
.
x
=
78+80+82+84
4
=81,
∴輸出v=
1
4
×(9+1+1+9)=5.
故答案為:5.
點(diǎn)評:本題考查了循環(huán)結(jié)構(gòu)的程序框圖,考查了莖葉圖及方差的計算公式,根據(jù)框圖的流程判斷算法的功能是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比q>0,且a5a7=4a42,a2=1,則a1=( 。
A、
1
2
B、
2
2
C、
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax2-ax+1(a≠0),如果f(-k)<0,則f(k+1)的值是( 。
A、正數(shù)B、負(fù)數(shù)C、零D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
1
3
x,等比數(shù)列{an}的前n項(xiàng)和為f(n)-c,數(shù)列{bn}{bn>0}的首項(xiàng)為c,且前n項(xiàng)和Sn滿足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{
1
bnbn+1
}前n項(xiàng)和為Tn,問使Tn
1005
2014
的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
b
 是不共線的兩個非零向量,
(1)若
OA
=2
a
-
b
OB
=3
a
+
b
,
OC
=
a
-3
b
,求證:A、B、C三點(diǎn)共線;
(2)若8
a
+k
b
與k
a
+2
b
共線,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=f(x)的圖象的一部分如圖所示
(1)根據(jù)圖象寫出f(x)在區(qū)間[-1,4]上的值域;
(2)根據(jù)圖象求y=f(x)的解析式;
(3)當(dāng)k∈R時,試探討關(guān)于x的方程f(x)-k=0在(-1,4]上的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

漳州市園林局對百花村1000株樹木的生長情況進(jìn)行調(diào)查,其中杉樹600株,槐樹400株.現(xiàn)用分層抽樣方法從這1000株樹木中隨機(jī)抽取100株,杉樹與槐樹的樹干周長(單位:cm)的抽查結(jié)果如表:
樹干周長(單位:cm) [30,40) [40,50) [50,60) [60,70)
杉樹 6 19 21 x
槐樹 4 20 y 6
(Ⅰ)求x,y的值及估計槐樹樹干周長的眾數(shù);
(Ⅱ)如果杉樹的樹干周長超過60cm就可以砍伐,請估計該片園林可以砍伐的杉樹有多少株?
(Ⅲ)樹干周長在30cm至40cm之間的6株杉樹中有1株患蟲害,現(xiàn)要從這6株杉株樹中任選兩株進(jìn)行排查,以便找出患蟲害的樹木,求在選出的樹木中含有患蟲害的樹木的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2sinx,sinx),
b
=(sinx,2
3
cosx),函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2acosB=bcosC+ccosB,若對任意滿足條件的A,不等式f(A)+m>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
2x+3y-11≤0
x+4y-8≥0
x-y+2≥0
若目標(biāo)函數(shù)z=x-ay(a>0)的最大值為1,則a
 

查看答案和解析>>

同步練習(xí)冊答案