【題目】已知橢圓)的右焦點(diǎn)為,是橢圓上任意一點(diǎn),且點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積的最大值為8.

1)求橢圓的方程;

2)若是上頂點(diǎn),直線l交橢圓,兩點(diǎn),的重心恰好為點(diǎn),求直線l的方程的一般式.

【答案】(1)(2)

【解析】

1)已知,點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積的最大時(shí),為短軸頂點(diǎn),這樣由三角形面積可計(jì)算出,再求出可得標(biāo)準(zhǔn)方程;

(2)由重心可求得的中點(diǎn)的坐標(biāo),設(shè)出的坐標(biāo)代入橢圓方程相減,由中點(diǎn)坐標(biāo)可求得直線的斜率,從而得直線方程。

解:(1)由已知得,當(dāng)點(diǎn)與短軸上的端點(diǎn)重合時(shí),點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積取最大值,則,

∴橢圓的方程為.

2)設(shè)線段的中點(diǎn)為,由三角形重心的性質(zhì)知,

,∴,即故得,

Q的坐標(biāo)為(3,-2.設(shè),,則,

,

以上兩式相減得

,

故直線的方程為,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南北朝時(shí)期的數(shù)學(xué)家祖暅提出了計(jì)算體積的祖暅原理:“冪勢(shì)既同,則積不容異!币馑际牵簝蓚(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等.已知曲線,直線為曲線在點(diǎn)處的切線.如圖所示,陰影部分為曲線、直線以及軸所圍成的平面圖形,記該平面圖形繞軸旋轉(zhuǎn)一周所得的幾何體為.給出以下四個(gè)幾何體:

圖①是底面直徑和高均為的圓錐;

圖②是將底面直徑和高均為的圓柱挖掉一個(gè)與圓柱同底等高的倒置圓錐得到的幾何體;

圖③是底面邊長(zhǎng)和高均為的正四棱錐;

圖④是將上底面直徑為,下底面直徑為,高為的圓臺(tái)挖掉一個(gè)底面直徑為,高為的倒置圓錐得到的幾何體.

根據(jù)祖暅原理,以上四個(gè)幾何體中與的體積相等的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的極值;

(2)設(shè)函數(shù).當(dāng)=時(shí),若區(qū)間[1,e]上存在x0,使得,求實(shí)數(shù)的取值范圍.(為自然對(duì)數(shù)底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)《人民網(wǎng)》報(bào)道,“美國(guó)國(guó)家航空航天局( NASA)發(fā)文稱,相比20年前世界變得更綠色了.衛(wèi)星資料顯示中國(guó)和印度的行動(dòng)主導(dǎo)了地球變綠.”據(jù)統(tǒng)計(jì),中國(guó)新增綠化面積的42%來(lái)自于植樹(shù)造林,下表是中國(guó)十個(gè)地區(qū)在2017年植樹(shù)造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復(fù)、人工更新的面積之和)

單位:公頃

造林方式

地區(qū)

造林總面積

人工造林

飛播造林

新封山育林

退化林修復(fù)

人工更新

內(nèi)蒙

618484

311052

74094

136006

90382

6950

河北

583361

345625

33333

135107

65653

3643

河南

149002

97647

13429

22417

15376

133

重慶

226333

100600

62400

63333

陜西

297642

33602

63865

16067

甘肅

325580

260144

57438

7998

新疆

263903

118105

6264

126647

10796

2091

青海

178414

16051

159734

2629

寧夏

91531

58960

22938

8298

1335

北京

19064

10012

4000

3999

1053

(I)請(qǐng)根據(jù)上述數(shù)據(jù)分別寫(xiě)出在這十個(gè)地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);

(Ⅱ)在這十個(gè)地區(qū)中,任選一個(gè)地區(qū),求該地區(qū)人工造林面積占造林總面積的比值超過(guò)的概率是多少?

(Ⅲ)在這十個(gè)地區(qū)中,從新封山育林面積超過(guò)五萬(wàn)公頃的地區(qū)中,任選兩個(gè)地區(qū),記X為這兩個(gè)地區(qū)中退化林修復(fù)面積超過(guò)六萬(wàn)公頃的地區(qū)的個(gè)數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大城市往往人口密集,城市綠化在健康人民群眾肺方面發(fā)揮著非常重要的作用,歷史留給我們城市里的大山擁有品種繁多的綠色植物更是無(wú)價(jià)之寶.改革開(kāi)放以來(lái),有的地方領(lǐng)導(dǎo)片面追求政績(jī),對(duì)森林資源野蠻開(kāi)發(fā)受到嚴(yán)肅查處事件時(shí)有發(fā)生.2019年的春節(jié)后,廣西某市林業(yè)管理部門在“綠水青山就是金山銀山”理論的不斷指引下,積極從外地引進(jìn)甲、乙兩種樹(shù)苗,并對(duì)甲、乙兩種樹(shù)苗各抽測(cè)了10株樹(shù)苗的高度(單位:厘米),數(shù)據(jù)如下面的莖葉圖:

(1)據(jù)莖葉圖求甲、乙兩種樹(shù)苗的平均高度;

(2)據(jù)莖葉圖,運(yùn)用統(tǒng)計(jì)學(xué)知識(shí)分析比較甲、乙兩種樹(shù)苗高度整齊情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,為橢圓上不與左右頂點(diǎn)重合的任意一點(diǎn),,分別為的內(nèi)心、重心,當(dāng)軸時(shí),橢圓的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合計(jì)

M

1

(1)求出表中Mp及圖中a的值;

(2)若該校高一學(xué)生有360人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,請(qǐng)列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形中,的中點(diǎn),,,,將(圖)沿直線折起,使(如圖.

1)求證:;

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 ,圓 的圓心在橢圓上,點(diǎn)到橢圓的右焦點(diǎn)的距離為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)作互相垂直的兩條直線,且交橢圓兩點(diǎn),直線交圓, 兩點(diǎn),且的中點(diǎn),求面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案