【題目】如圖,四棱錐中,底面為菱形,,為等邊三角形.
(1)求證:.
(2)若,,求二面角的余弦值.
【答案】(1)見(jiàn)解析(2)0
【解析】
(1)取AD中點(diǎn)E,連接,由已知可得,又即可證平面,從而可得;
(2)建立相應(yīng)的空間直角坐標(biāo)系,應(yīng)用面的法向量垂直得到其余弦值為0.
(1)因?yàn)榈酌?/span>ABCD為菱形,且,所以為等邊三角形.如下圖,作,則E為AD的中點(diǎn).
又因?yàn)?/span>為等邊三角形,所以.
因?yàn)?/span>PE和BE為平面PBE內(nèi)的兩條相交的直線,所以直線平面PBE,
又因?yàn)?/span>PB為面PBE內(nèi)的直線,所以.
(2)為等邊三角形,邊長(zhǎng)為2,
,所以,,
因?yàn)?/span>,
所以面,
如圖建立空間直角坐標(biāo)系,
則,
設(shè)平面的法向量為,
,即,即,
取,則,,
設(shè)平面的法向量為,
,即,即,
取,則,,
因?yàn)?/span>,
設(shè)二面角的平面角為,則有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng),下表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲(chǔ)蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2:
時(shí)間代號(hào)t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關(guān)于t的線性回歸方程;
(Ⅱ)用所求回歸方程預(yù)測(cè)到2020年年底,該地儲(chǔ)蓄存款額可達(dá)多少?
(附:對(duì)于線性回歸方程,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓:(),左、右焦點(diǎn)分別是、且,以為圓心,3為半徑的圓與以為圓心,1為半徑的圓相交于橢圓上的點(diǎn)
(1)求橢圓的方程;
(2)設(shè)橢圓:,為橢圓上任意一點(diǎn),過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),射線交橢圓于點(diǎn)
①求的值;
②令,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“一帶一路”沿線的20國(guó)青年評(píng)選出了中國(guó)“新四大發(fā)明”:高鐵、支付寶、共享單車(chē)和網(wǎng)購(gòu).2019年春節(jié)期間,“支付寶大行動(dòng)”用發(fā)紅包的方法刺激支付寶的使用.某商家統(tǒng)計(jì)前5名顧客掃描紅包所得金額分別為5.2元,2.9元,3.3元,5.9元,4.8元,商家從這5名顧客中隨機(jī)抽取3人贈(zèng)送飲水杯.
(1)求獲得飲水杯的三人中至少有一人的紅包超過(guò)5元的概率;
(2)統(tǒng)計(jì)一周內(nèi)每天使用支付寶付款的人數(shù)x與商家每天的凈利潤(rùn)y元,得到7組數(shù)據(jù),如表所示,并作出了散點(diǎn)圖.
(i)直接根據(jù)散點(diǎn)圖判斷,與出哪一個(gè)適合作為每天的凈利潤(rùn)的回歸方程類(lèi)型.
(ii)根據(jù)(i)的判斷,建立y關(guān)于x的回歸方程;若商家當(dāng)天的凈利潤(rùn)至少是1400元,估計(jì)使用支付寶付款的人數(shù)至少是多少?(a,b,c,d的值取整數(shù))
參考數(shù)據(jù):
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,點(diǎn)與拋物線的焦點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),過(guò)點(diǎn)且斜率為的直線與拋物線交于不同兩點(diǎn),線段的中點(diǎn)為,直線與拋物線交于兩點(diǎn).
(Ⅰ)判斷是否存在實(shí)數(shù)使得四邊形為平行四邊形.若存在,求出的值;若不存在,說(shuō)明理由;
(Ⅱ)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,側(cè)面是菱形,,.
(1)若是線段的中點(diǎn),求證:平面平面;
(2)若、、分別是線段、、的中點(diǎn),求證:直線平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)、的坐標(biāo)分別為和,動(dòng)點(diǎn)P滿足,設(shè)動(dòng)點(diǎn)P的軌跡為,以動(dòng)點(diǎn)P到點(diǎn)距離的最大值為長(zhǎng)軸,以點(diǎn)、為左、右焦點(diǎn)的橢圓為,則曲線和曲線的交點(diǎn)到軸的距離為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)詩(shī)詞大會(huì)的播出引發(fā)了全民讀書(shū)熱,某學(xué)校語(yǔ)文老師在班里開(kāi)展了一次詩(shī)詞默寫(xiě)比賽,班里40名學(xué)生得分?jǐn)?shù)據(jù)的莖葉圖如右圖,若規(guī)定得分不低于85分的學(xué)生得到“詩(shī)詞達(dá)人”的稱(chēng)號(hào),低于85分且不低于70分的學(xué)生得到“詩(shī)詞能手”的稱(chēng)號(hào),其他學(xué)生得到“詩(shī)詞愛(ài)好者”的稱(chēng)號(hào).根據(jù)該次比賽的成績(jī)按照稱(chēng)號(hào)的不同進(jìn)行分層抽樣抽選10名學(xué)生,則抽選的學(xué)生中獲得“詩(shī)詞能手”稱(chēng)號(hào)的人數(shù)為( 。
A. 6B. 5C. 4D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左頂點(diǎn)為,離心率為,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)若直線與橢圓交于,兩點(diǎn),直線,分別與軸交于點(diǎn),,求證:在軸上存在點(diǎn),使得無(wú)論非零實(shí)數(shù)怎樣變化,總有為直角,并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com