19.若命題p:x∈(A∩B),則命題“?p”是x∉(A∩B).

分析 直接利用命題的否定寫出結(jié)果即可.

解答 解:∵命題p:x∈(A∩B),
∴命題“?p”是x∉(A∩B),
故答案為:x∉(A∩B)

點評 本題考查命題的否定,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2sin(3x-$\frac{π}{3}$),x∈R.
(1)求f(x)的最小正周期,單調(diào)減區(qū)間;
(2)若x∈[0,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)$f(x)={\{\;}_{{log}_{3}({x}^{2}-1),x≥2.}^{{2}^{x-1},x<2,}$,則f(f(2))的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知直線2x-y+1=0的傾斜角為θ,則sin2θ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在底面是菱形的四棱錐P-ABCD中,PA⊥底面ABCD,∠ABC=60°,PA=AB=2,E是PD中點.
(1)求證:PB∥平面ACE;
(3)求二面角P-BC-A的大;
(2)求三棱錐E-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)滿足:(1)定義域為R;(2)對任意的x∈R,有f(x+2)=2f(x);(3)當(dāng)x∈[-1,1]時,$f(x)=cos\frac{π}{2}x$,若函數(shù)$g(x)=\left\{\begin{array}{l}{e^x},x≤0\\ lnx,x>0\end{array}\right.$,則函數(shù)y=f(x)-g(x)在區(qū)間[-5,5]上零點的個數(shù)是( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)$f(x)=sin(x+\frac{π}{2})$,$g(x)=cos(x-\frac{π}{2})$,則下列結(jié)論中正確的是( 。
A.函數(shù)y=f(x)•g(x)的最小正周期為2π
B.函數(shù)y=f(x)•g(x)的最大值為1
C.$x=\frac{π}{2}$是函數(shù)y=f(x)•g(x)的圖象的一條對稱軸
D.函數(shù)y=f(x)•g(x)在區(qū)間$[-\frac{π}{4},\frac{π}{4}]$是單調(diào)增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知△ABC的三個頂點A(4,0),B(8,10),C(0,6).
(Ⅰ) 求AB邊上的高線所在直線方程;
(Ⅱ) 求BC邊上的中線所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.用數(shù)字2,3組成四位數(shù),則數(shù)字2,3至少都出現(xiàn)一次的四位數(shù)的概率是(  )
A.$\frac{1}{8}$B.$\frac{7}{8}$C.$\frac{3}{4}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案