已知函數(shù)f(x)=
2x+3(當(dāng)x≠0時)
a(當(dāng)x=0時)
,點在x=0處連續(xù),則
lim
x→∞
an2+1
a2n2+n
=
 
分析:由函數(shù)f(x)=
2x+3(當(dāng)x≠0時)
a(當(dāng)x=0時)
在點x=0處連續(xù),可得
lim
x→0
f(x)=f(0)
,解可得a=3.由此能求出
lim
x→∞
an2+1
a2n2+n
的值.
解答:解:
lim
x→0+
(2x+3)=
lim
x→0-
(2x+3)
=3,
f(0)=a點在x=0處連續(xù),
所以
lim
x→0
f(x)=f(0)
,
即a=3,
lim
x→∞
3n2+1
32n2+n
=
3
9
=
1
3

故答案為:
1
3
點評:本題考查函數(shù)的極限和運算,解題時要認真審題,仔細解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實數(shù)a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數(shù)的圖象與x軸有兩個不同的交點;
(2)如果函數(shù)的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案