3.過點(diǎn)P(0,1),且與點(diǎn)A(3,3)和B(5,-1)的距離相等的直線方程是(  )
A.y=1B.2x+y-1=0
C.y=1或2x+y-1=0D.2x+y-1=0或2x+y+1=0

分析 由題意可知當(dāng)直線平行于直線AB時(shí),或過AB的中點(diǎn)時(shí)滿足題意,分別求其斜率可得方程.

解答 解:當(dāng)直線平行于直線AB時(shí),或過AB的中點(diǎn)時(shí)滿足題意,
當(dāng)直線平行于直線AB時(shí),所求直線的斜率為k=$\frac{3+1}{3-5}$=-2,
故直線方程為y=-2x+1,即2x+y-1=0;
當(dāng)直線過AB的中點(diǎn)(4,1)時(shí),斜率為k=0,
故直線方程為y=1;
故所求直線方程是為:y=1或2x+y-1=0.
故選C.

點(diǎn)評(píng) 本題考查直線方程的求解,分類討論是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若集合A={x∈Z|-2<x<2},B={x|y=log2x2},則A∩B=( 。
A.{-1,1}B.{-1,0,1}C.{1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知z1=a+3i,z2=3-4i,若$\frac{z_1}{z_2}$為純虛數(shù),則實(shí)數(shù)a的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在直三棱柱ABC-A1B1C1中,D為BC的中點(diǎn),AB=3,AC=AA1=4,BC=5.
(1)求證:AB⊥A1C;
(2)求證:A1B∥平面ADC1;
(3)求直三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在三棱錐P-ABC中,平面PAC⊥平面ABC,PA=PC=BA=BC,則直線PB與平面PAC所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)矩陣M=$[\begin{array}{l}{1}&{2}\\{x}&{y}\end{array}]$,N=$[\begin{array}{l}{2}&{4}\\{-1}&{-1}\end{array}]$,若MN=$[\begin{array}{l}{0}&{2}\\{5}&{13}\end{array}]$,求矩陣M的特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.△ABC中,已知A=$\frac{π}{3}$,a=10.
(1)若B=$\frac{π}{4}$,求△ABC的面積;
(2)求b的取值范圍;
(3)求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知∠Q的終邊上有一點(diǎn)P(x,-1)(x≠0),且tan∠Q=-x,求sin∠Q+cos∠Q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)=ax5+bx3+cx-1,若f(-3)=5,則f(3)=-7.

查看答案和解析>>

同步練習(xí)冊(cè)答案