10.設(shè)a=0.60.4,b=0.40.6,c=0.40.4,則a,b,c的大小關(guān)系是( 。
A.a>c>bB.a>b>cC.c>a>bD.b>c>a

分析 利用指數(shù)函數(shù)與冪函數(shù)的單調(diào)性即可比較出大小關(guān)系.

解答 解:∵a=0.60.4>c=0.40.4; 
b=0.40.6<c=0.40.4,
則a,b,c的大小關(guān)系是a>c>b.
故選:A.

點評 本題考查了指數(shù)函數(shù)與冪函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.長方體ABCD-A1B1C1D1中,若A1C與平面AB1D1相交于點M,則$\frac{{{A_1}M}}{{{A_1}C}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{{x}^{2}}{lnx}$.
(I)求函數(shù)f(x)在區(qū)間[e${\;}^{\frac{1}{4}}$,e]上的最值;
(II)若g(x)=f(x)+$\frac{4{m}^{2}-4mx}{lnx}$(其中m為常數(shù)),且當(dāng)0<m<$\frac{1}{2}$時,設(shè)函數(shù)g(x)的3個極值點為a,b,c,且a<b<c,證明:0<2a<b<1<c,并討論函數(shù)g(x)的單調(diào)區(qū)間(用a,b,c表示單調(diào)區(qū)間)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(x)(x∈R)有導(dǎo)函數(shù),且?x∈R,f′(x)>f(x),n∈N*,則有( 。
A.enf(-n)<f(0),f(n)>enf(0)B.enf(-n)<f(0),f(n)<enf(0)
C.enf(-n)>f(0),f(n)>enf(0)D.enf(-n)>f(0),f(n)<enf(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.四邊形ABCD四頂點的坐標(biāo)分別為A(0,0),B(1,0),C(2,1),D(0,3),將四邊形繞y軸旋轉(zhuǎn)一周得到一幾何體,則此幾何體的表面積為(7$\sqrt{2}$+1)π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.過點C(3,4)作圓x2+y2=5的兩條切線,切點分別為A、B,則點C到直線AB的距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=4x-2x-6的零點為log23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)a>0且a≠1,函數(shù)f(x)=loga|x2-(a+$\frac{1}{a}})x+1}$)x+1|在[1,2]上是增函數(shù),則a的取值范圍( 。
A.a≥2+$\sqrt{3}$B.0<a<2-$\sqrt{3}$C.a≥2+$\sqrt{3}$或0<a<1D.a≥2+$\sqrt{3}$或0<a<2-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某學(xué)校為調(diào)查高三年學(xué)生的身高情況,按隨機抽樣的方法抽取80名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1)和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在170~175cm的男生人數(shù)有16人.
(I)試問在抽取的學(xué)生中,男、女生各有多少人?
(II)根據(jù)頻率分布直方圖,完成下列的2×2列聯(lián)表,并判斷能有多大的把握認(rèn)為“身高與性別有關(guān)”?
≥170cm<170cm總計
男生身高301040
女生身高43640
總計344680
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
p(K2>k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4450.7081.3232.0722.7063.8415.0246.6357.87910.83

查看答案和解析>>

同步練習(xí)冊答案