求函數(shù)y=
log2
1
sinx
-1
的定義域.
分析:根據(jù)函數(shù)成立的條件建立不等式即可求函數(shù)的定義域.
解答:解:要使函數(shù)有意義,則
log2
1
sinx
-1≥0
1
sinx
>0
,即
1
sinx
≥2
sinx>0
,
∴0<sinx≤
1
2

即2kπ<x≤2kπ+
π
6
6
+2kπ≤x<2kπ+π,k∈Z,
即函數(shù)的定義域?yàn)椋?kπ,2kπ+
π
6
]∪[
6
+2kπ,2kπ+π),k∈Z.
點(diǎn)評(píng):本題主要考查函數(shù)定義域的求法,要求熟練掌握函數(shù)成立的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高一年級(jí)數(shù)學(xué)興趣小組的同學(xué)經(jīng)過(guò)研究,證明了以下兩個(gè)結(jié)論是完全正確的:①若函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(a,b)成中心對(duì)稱(chēng)圖形,則函數(shù)y=f(x+a)-b是奇函數(shù);②若函數(shù)y=f(x+a)-b是奇函數(shù),則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(a,b)成中心對(duì)稱(chēng)圖形.請(qǐng)你利用他們的研究成果完成下列問(wèn)題:
(1)將函數(shù)g(x)=x3+6x2的圖象向右平移2個(gè)單位,再向下平移16個(gè)單位,求此時(shí)圖象對(duì)應(yīng)的函數(shù)解釋式,并利用已知條件中的結(jié)論求函數(shù)g(x)圖象對(duì)稱(chēng)中心的坐標(biāo);
(2)求函數(shù)h(x)=log2
1-x4x
圖象對(duì)稱(chēng)中心的坐標(biāo),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在學(xué)習(xí)函數(shù)的奇偶性時(shí)我們知道:若函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(0,0)成中心對(duì)稱(chēng)圖形,則有函數(shù)y=f(x)為奇函數(shù),反之亦然;現(xiàn)若有函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(a,b)成中心對(duì)稱(chēng)圖形,則有與y=f(x)相關(guān)的哪個(gè)函數(shù)為奇函數(shù),反之亦然.
(2)將函數(shù)g(x)=x3+6x2的圖象向右平移2個(gè)單位,再向下平移16個(gè)單位,求此時(shí)圖象對(duì)應(yīng)的函數(shù)解釋式,并利用(1)的性質(zhì)求函數(shù)g(x)圖象對(duì)稱(chēng)中心的坐標(biāo);
(3)利用(1)中的性質(zhì)求函數(shù)h(x)=log2
1-x4x
圖象對(duì)稱(chēng)中心的坐標(biāo),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在學(xué)習(xí)函數(shù)的奇偶性時(shí)我們知道:若函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(0,0)成中心對(duì)稱(chēng)圖形,則有函數(shù)y=f(x)為奇函數(shù),反之亦然;現(xiàn)若有函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(a,b)成中心對(duì)稱(chēng)圖形,則有與y=f(x)相關(guān)的哪個(gè)函數(shù)為奇函數(shù),反之亦然.
(2)將函數(shù)g(x)=x3+6x2的圖象向右平移2個(gè)單位,再向下平移16個(gè)單位,求此時(shí)圖象對(duì)應(yīng)的函數(shù)解釋式,并利用(1)的性質(zhì)求函數(shù)g(x)圖象對(duì)稱(chēng)中心的坐標(biāo);
(3)利用(1)中的性質(zhì)求函數(shù)h(x)=log2
1-x4x
圖象對(duì)稱(chēng)中心的坐標(biāo),并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案