分析:本題涉及到兩個(gè)數(shù)列{an}、{bn},而數(shù)列{bn}是依附于{an}而派生出來的,因而首先要由已知Sn+1=4an+1導(dǎo)出{an}的遞推關(guān)系式,進(jìn)而由an與bn的關(guān)系得出{bn}的遞推公式,然后運(yùn)用遞推公式法證明{bn}是等差數(shù)列.
證明:∵Sn+1=4an+1, ①
∴Sn+2=4an+1+1. ②
②-①得Sn+2-Sn+1=4an+1-4an.
而Sn+2-Sn+1=an+2,
∴an+2=4an+1-4an.
由bn=得an=2nbn,
∴2n+2bn+2=4·2n+1bn+1-4·2nbn,
即有bn+2-bn+1=bn+1-bn.
因此數(shù)列{bn}是一個(gè)等差數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
an |
1+2an |
1 |
2n-1 |
1 |
2n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
n+1 |
2 |
2n |
an |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
an |
lim |
n→∞ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A、
| ||
B、
| ||
C、
| ||
D、
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com