若關(guān)于x的不等式2-x2=|x-a|至少有一個負數(shù)解,則實數(shù)a的取值范圍是
 
考點:根的存在性及根的個數(shù)判斷
專題:計算題,作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:關(guān)于x的不等式2-x2=|x-a|至少有一個負數(shù)解化為y=2-x2與y=|x-a|至少有一個橫坐標(biāo)為負數(shù)的交點,從而解得.
解答: 解:y=2-x2是開口向下的拋物線,
y=|x-a|是與x軸交于(a,0)點的“V字形”折線,
顯然當(dāng)a=2時,y=2-x2(x<0)的圖象都在折線下方,
由2-x2=x-a得x2+x-a-2=0,由△=1+4a+8=0得a=-
9
4
,
此時y=x-a與y=2-x2(x<0)相切,故-
9
4
≤a<2.
故答案為:[-
9
4
,2).
點評:本題考查了方程的解與函數(shù)的交點的判斷,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線 L1:y=x+1與橢圓 
x2
4
+
y2
3
=1相交于A、B兩點,試求弦AB的中點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x3+15x2+33x+6的單調(diào)減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-kx-1,
(1)若k=2,試用定義法證明f(x)在區(qū)間[1,+∞)上為增函數(shù);
(2)求f(x)在區(qū)間[1,4]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,C=
π
3
,AB=6,則△ABC面積的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,網(wǎng)格紙上正方形小格的邊長為1,圖中粗線畫出的是某幾何體的三視圖,則該幾何體體積的最小值等于(  )
A、36
B、
63
2
C、18
D、
45
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-mx+n,且f(1)=-1,f(n)=m,則f(-5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,滿足Sn=an+1-2n+1+1,(n∈N*),且a1=1.
證明:數(shù)列{
an
2n-1
}
為等差數(shù)列,并求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),對?x∈R恒有f(x-2)=f(x)+f(2),且當(dāng)x∈(0,1)時,f(x)=x2-x,則f(
3
2
)=( 。
A、
3
4
B、
1
4
C、-
1
4
D、-
3
4

查看答案和解析>>

同步練習(xí)冊答案