如圖:已知△OFQ的面積為,且,

(1)若時(shí),求向量的夾角的取值范圍;

(2)設(shè),時(shí),若以O(shè)為中心,F(xiàn)為焦點(diǎn)的雙曲線經(jīng)過點(diǎn)Q,當(dāng)取得最小值時(shí),求此雙曲線的方程.

答案:
解析:

(1)由已知,得所以,因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60TT/0001/0333/5a3987f1c4780dffc07329386a59f2b2/C/Image11457.gif" width=96 height=24>,所以,則

(2)以O(shè)為原點(diǎn),所在直線為x軸建立直角坐標(biāo)系,設(shè)所求的雙曲線方程為,(a>0,b>0),Q點(diǎn)的坐標(biāo)為(,),則=(,),因?yàn)椤鱋FQ的面積,所以,又由(c,0)(),所以,,當(dāng)且僅當(dāng)c=4時(shí),最小,此時(shí)Q的坐標(biāo)為(,),由此可得解之得故所求的方程為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△OFQ的面積為S,且
OF
FQ
=1

(Ⅰ)若
1
2
<S<
3
2
,求
OF
,
FQ
的范圍;
(Ⅱ)設(shè)|
OF
|=c(c≥2),S=
3
4
c.
若以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)的橢圓經(jīng)過點(diǎn)Q,以c為變量,當(dāng)|
OQ
|
取最小值時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△OFQ的面積為S,且
OF
FQ
=1

(Ⅰ)若
1
2
<S<
3
2
,求
OF
FQ
的范圍;
(Ⅱ)設(shè)|
OF
|=c(c≥2),S=
3
4
c.
若以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)的橢圓經(jīng)過點(diǎn)Q,以c為變量,當(dāng)|
OQ
|
取最小值時(shí),求橢圓的方程.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市首師大附中高三大練習(xí)數(shù)學(xué)試卷10(理科)(解析版) 題型:解答題

如圖,已知△OFQ的面積為S,且
(Ⅰ)若,求的范圍;
(Ⅱ)設(shè)若以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)的橢圓經(jīng)過點(diǎn)Q,以c為變量,當(dāng)取最小值時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省石家莊市正定中學(xué)高三第三次考試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知△OFQ的面積為S,且
(Ⅰ)若,求的范圍;
(Ⅱ)設(shè)若以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)的橢圓經(jīng)過點(diǎn)Q,以c為變量,當(dāng)取最小值時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)精品復(fù)習(xí)09:平面向量的概念及運(yùn)算(解析版) 題型:解答題

如圖,已知△OFQ的面積為S,且
(Ⅰ)若,求的范圍;
(Ⅱ)設(shè)若以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)的橢圓經(jīng)過點(diǎn)Q,以c為變量,當(dāng)取最小值時(shí),求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案