【題目】已知函數(shù)f(x)=sin(2x+φ),其中φ為實數(shù),若f(x)≤|f( )|對x∈R恒成立,且f( )>f(π),則f(x)的單調(diào)遞增區(qū)間是(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)

【答案】C
【解析】解:若 對x∈R恒成立,
則f( )等于函數(shù)的最大值或最小值
即2× +φ=kπ+ ,k∈Z
則φ=kπ+ ,k∈Z

即sinφ<0
令k=﹣1,此時φ= ,滿足條件
令2x ∈[2kπ﹣ ,2kπ+ ],k∈Z
解得x∈
故選C
由若 對x∈R恒成立,結(jié)合函數(shù)最值的定義,我們易得f( )等于函數(shù)的最大值或最小值,由此可以確定滿足條件的初相角φ的值,結(jié)合 ,易求出滿足條件的具體的φ值,然后根據(jù)正弦型函數(shù)單調(diào)區(qū)間的求法,即可得到答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,在我市某普通中學(xué)高中生中隨機抽取200名學(xué)生,得到如下2×2列聯(lián)表:

喜歡數(shù)學(xué)課

不喜歡數(shù)學(xué)課

合計

30

60

90

20

90

110

合計

50

150

200

經(jīng)計算K2≈6.06,根據(jù)獨立性檢驗的基本思想,約有(填百分?jǐn)?shù))的把握認(rèn)為“性別與喜歡數(shù)學(xué)課之間有關(guān)系”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.

(1)求證:DC⊥平面PAC;
(2)求證:平面PAB⊥平面PAC;
(3)設(shè)點E為AB的中點,在棱PB上是否存在點F,使得PA∥平面CEF?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有60m長的鋼材,要制作如圖所示的窗框:

(1)求窗框面積y與窗框?qū)抶的函數(shù)關(guān)系;
(2)當(dāng)窗框?qū)挒槎嗌倜讜r,面積y有最大值?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知sinAsinB=sinCtanC.
(1)求 的值:
(2)若a= c,且△ABC的面積為4,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別是a,b,c,且a=2,2cos2 +sinA=
(1)若滿足條件的△ABC有且只有一個,求b的取值范圍;
(2)當(dāng)△ABC的周長取最大值時,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】長方體ABCD﹣A1B1C1D1中,AB=2,AA1=1,若二面角A1﹣BD﹣A的大小為 ,則BD1與面A1BD所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(1,2),過點P(5,﹣2)的直線與拋物線y2=4x相交于B,C兩點,則△ABC是(
A.直角三角形
B.鈍角三角形
C.銳角三角形
D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中, , ,△PAB和△PBD都是邊長為2的等邊三角形,設(shè)P在底面ABCD的射影為O.
(1)求證:O是AD中點;
(2)證明:BC⊥PB;
(3)求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案