已知點(diǎn)P是橢圓16x2+25y2=1600上一點(diǎn),且在x軸上方,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),直線(xiàn)PF2的斜率為-4
3
,則△PF1F2的面積為(  )
A.32
3
B.24
3
C.32
2
D.24
2
橢圓16x2+25y2=1600化成標(biāo)準(zhǔn)形式為
x2
100
+
y2
64
=1

∴F1、F2是橢圓
x2
100
+
y2
64
=1
的左、右焦點(diǎn),
∴F1(-6,0),F(xiàn)2(6,0),
設(shè)P(x,y)是橢圓上一點(diǎn),則
16x2+25y2=1600①
y
x-6
=-4
3
y>0③

消去y,得19x2-225x+6500=0,
∴x1=5或x2=
130
19

當(dāng)x2=
130
19
時(shí),代入②得y2=-
64
3
19
與③矛盾,舍去.
由x=5,得y=4
3

∴△PF1F2的面積S=
1
2
•12•4
3
=24
3

故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

雙曲線(xiàn)C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的兩條準(zhǔn)線(xiàn)間距離為3,右焦點(diǎn)到直線(xiàn)x+y-1=0的距離為
2
2

(1)求雙曲線(xiàn)C的方程;
(2)雙曲線(xiàn)C中是否存在以點(diǎn)P(1,
1
2
)
為中點(diǎn)的弦,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線(xiàn)過(guò)點(diǎn)(3,-2),且與橢圓4x2+9y2=36有相同焦點(diǎn),則雙曲線(xiàn)的標(biāo)準(zhǔn)方程為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在Rt△ABC中,∠CAB=90°,|AB|=2,|AC|=
3
2
,一曲線(xiàn)E過(guò)點(diǎn)C,且曲線(xiàn)E上任一點(diǎn)到A,B兩點(diǎn)的距離之和不變.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線(xiàn)E的方程;
(2)設(shè)點(diǎn)Q是曲線(xiàn)E上的一動(dòng)點(diǎn),求線(xiàn)段QA中點(diǎn)的軌跡方程;
(3)設(shè)M,N是曲線(xiàn)E上不同的兩點(diǎn),直線(xiàn)CM和CN的傾斜角互補(bǔ),試判斷直線(xiàn)MN的斜率是否為定值.如果是,求這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由.
(4)若點(diǎn)D是曲線(xiàn)E上的任一定點(diǎn)(除曲線(xiàn)E與直線(xiàn)AB的交點(diǎn)),M,N是曲線(xiàn)E上不同的兩點(diǎn),直線(xiàn)DM和DN的傾斜角互補(bǔ),直線(xiàn)MN的斜率是否為定值呢?如果是,請(qǐng)你指出這個(gè)定值.(本小題不必寫(xiě)出解答過(guò)程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,點(diǎn)M 在棱AB上,且AM=
1
3
,點(diǎn)P是平面ABCD上的動(dòng)點(diǎn),且動(dòng)點(diǎn)P到直線(xiàn)A1D1的距離與點(diǎn)P到點(diǎn)M 的距離的平方差為2,則動(dòng)點(diǎn)P的軌跡是( 。
A.圓B.拋物線(xiàn)C.雙曲線(xiàn)D.直線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)雙曲線(xiàn)
x2
3
-y2=1
的右焦點(diǎn)F2,作傾斜角為
π
4
的直線(xiàn)交雙曲線(xiàn)于A(yíng)、B兩點(diǎn),
求:(1)|AB|的值;
(2)△F1AB的周長(zhǎng)(F1為雙曲線(xiàn)的左焦點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(guò)點(diǎn)(
3
,-
3
2
)
,且橢圓的離心率e=
1
2
,過(guò)橢圓的右焦點(diǎn)F作兩條互相垂直的直線(xiàn),分別交橢圓于點(diǎn)A、B及C、D.
(Ⅰ)求橢圓的方程;
(Ⅱ)求證:
1
|AB|
+
1
|CD|
為定值;
(Ⅲ)求|AB|+
9
16
|CD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線(xiàn)C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
2
,且經(jīng)過(guò)點(diǎn)(4,-
10
).
(Ⅰ)求雙曲線(xiàn)C的方程;
(Ⅱ)設(shè)F1、F2為雙曲線(xiàn)C的左、右焦點(diǎn),若雙曲線(xiàn)C上一點(diǎn)M滿(mǎn)足F1M⊥F2M,求△MF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)點(diǎn)M(1,1)作一直線(xiàn)與橢圓
x2
9
+
y2
4
=1相交于A(yíng),B兩點(diǎn),若M點(diǎn)恰好為弦AB的中點(diǎn),則AB所在直線(xiàn)的方程為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案