已知拋物線與拋物線關(guān)于直線對稱,則的準(zhǔn)線方程是(   )

A.        B.          C.          D.

 

【答案】

A

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•和平區(qū)一模)已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,離心率為
1
2
,它的一個頂點恰好是拋物線y=
3
12
x2的焦點.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若A、B是橢圓C上關(guān)x軸對稱的任意兩點,設(shè)P(-4,0),連接PA交橢圓C于另一點E,求證:直線BE與x軸相交于定點M;
(III)設(shè)O為坐標(biāo)原點,在(II)的條件下,過點M的直線交橢圓C于S、T兩點,求
OS
OT
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•和平區(qū)一模)已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,離心率為
1
2
,它的一個頂點恰好是拋物線x2=4
3
y
的焦點.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若A、B是橢圓C上關(guān)x軸對稱的任意兩點,設(shè)P(-4,0),連接PA交橢圓C于另一點E,求證:直線BE與x軸相交于定點M;
(III)設(shè)O為坐標(biāo)原點,在(II)的條件下,過點M的直線交橢圓C于S、T兩點,求
OS
OT
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:和平區(qū)一模 題型:解答題

已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,離心率為
1
2
,它的一個頂點恰好是拋物線x2=4
3
y
的焦點.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若A、B是橢圓C上關(guān)x軸對稱的任意兩點,設(shè)P(-4,0),連接PA交橢圓C于另一點E,求證:直線BE與x軸相交于定點M;
(III)設(shè)O為坐標(biāo)原點,在(II)的條件下,過點M的直線交橢圓C于S、T兩點,求
OS
OT
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年天津市和平區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,離心率為,它的一個頂點恰好是拋物線x2=4的焦點.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若A、B是橢圓C上關(guān)x軸對稱的任意兩點,設(shè)P(-4,0),連接PA交橢圓C于另一點E,求證:直線BE與x軸相交于定點M;
(III)設(shè)O為坐標(biāo)原點,在(II)的條件下,過點M的直線交橢圓C于S、T兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年天津市和平區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,離心率為,它的一個頂點恰好是拋物線y=x2的焦點.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若A、B是橢圓C上關(guān)x軸對稱的任意兩點,設(shè)P(-4,0),連接PA交橢圓C于另一點E,求證:直線BE與x軸相交于定點M;
(III)設(shè)O為坐標(biāo)原點,在(II)的條件下,過點M的直線交橢圓C于S、T兩點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案