【題目】設(shè)f(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤|f( )|對(duì)一切x∈R恒成立,則以下結(jié)論正確的是(寫(xiě)出所有正確結(jié)論的編號(hào)). ① ;② ≥ ;
③f(x)的單調(diào)遞增區(qū)間是(kπ+ ,kπ+ )(k∈Z);
④f(x)既不是奇函數(shù)也不是偶函數(shù).
【答案】①②④
【解析】解:由f(x)=asin 2x+bcos 2x= sin(2x+φ). ∵f(x)≤|f( )|對(duì)一切x∈R恒成立
∴當(dāng)x= 時(shí),函數(shù)取得最大值,即2× +φ= ,解得:φ= .
故得f(x)= sin(2x+ ).
則f( )= sin(2× + )=0,∴①對(duì).
②f( )= sin(2× + )=-
f( )= sin(2× + )= ,∴ ≥ ,∴②對(duì).
由 2x+ ,(k∈Z)
解得:- +kπ≤x≤ +kπ,(k∈Z)
∴f(x)的單調(diào)遞增區(qū)間是(kπ- ,kπ+ )(k∈Z);∴③不對(duì)
f(x)的對(duì)稱軸2x+ = +kπ,(k∈Z);∴③
解得:x= kπ+ ,不是偶函數(shù),
當(dāng)x=0時(shí),f(0)= ,不關(guān)于(0,0)對(duì)稱,
∴f(x)既不是奇函數(shù)也不是偶函數(shù).
所以答案是①②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題:
(1)隨機(jī)誤差e是衡量預(yù)報(bào)精確度的一個(gè)量,它滿足E(e)=0
(2)殘差平方和越小的模型,擬合的效果越好;
(3)用相關(guān)指數(shù)R2來(lái)刻畫(huà)回歸的效果時(shí),R2的值越小,說(shuō)明模型擬合的效果越好;
(4)直線y=bx+a和各點(diǎn)(x1 , y1),(x2 , y2),…,(xn , yn)的偏差 是該坐標(biāo)平面上所有直線與這些點(diǎn)的偏差中最小的直線.
其中真命題的個(gè)數(shù)( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=ax2﹣(a+1)x+1
(1)解關(guān)于x的不等式f(x)>0;
(2)若對(duì)任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=|sinx|+2|cosx|的值域?yàn)椋?/span> )
A.[1,2]
B.[ ,3]
C.[2, ]
D.[1, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=2,前n項(xiàng)和為Sn , 若Sn=2(an﹣1),(n∈N+).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(log2an+1)2﹣(log2an)2 , 若cn=anbn , 求{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名選手參加歌手大賽時(shí),5名評(píng)委打的分?jǐn)?shù)用莖葉圖表示(如圖).s1、s2分別表示甲、乙選手分?jǐn)?shù)的標(biāo)準(zhǔn)差,則s1與s2的關(guān)系是( )
A.s1>s2
B.s1=s2
C.s1<s2
D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐S﹣ABCD中,底面ABCD為平行四邊形,AB=3,AC=4,AD=5,SA⊥平面ABCD.
(1)證明:AC⊥平面SAB;
(2)若SA=2,求三棱錐A﹣SCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】證明
(1)如果a,b都是正數(shù),且a≠b,求證: + > +
(2)設(shè)x>﹣1,m∈N* , 用數(shù)學(xué)歸納法證明:(1+x)m≥1+mx.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù) 在區(qū)間[﹣ , ]上的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
2x﹣ | ﹣ π | ﹣π | ﹣ | 0 | π | |
x | ﹣ | ﹣ | ﹣ | |||
f(x) |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并在給出的直角坐標(biāo)系中,畫(huà)出f(x)在區(qū)間[﹣ , ]上的圖象;
(2)求f(x)的最小值及取最小值時(shí)x的集合;
(3)求f(x)在 時(shí)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com