分析 (1)利用三種方程的轉(zhuǎn)化方法,求圓C的普通方程和直線l的直角坐標(biāo)方程;
(2)利用參數(shù)的幾何意義,即可求點(diǎn)M到A,B兩點(diǎn)的距離之積.
解答 解:(1)曲線C:$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(a為參數(shù)),化為普通方程為:$\frac{x^2}{3}+{y^2}=1$,
由$\frac{{\sqrt{2}}}{2}ρcos(θ+\frac{π}{4})=-1$,得ρcosθ-ρsinθ=-2,所以直線l的直角坐標(biāo)方程為x-y+2=0.(5分)
(2)直線l1的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t.\end{array}\right.$(t為參數(shù)),代入$\frac{x^2}{3}+{y^2}=1$,化簡得:$2{t^2}-\sqrt{2}t-2=0$,得t1t2=-1,∴|MA|•|MB|=|t1t2|=1.(10分)
點(diǎn)評(píng) 本題考查三種方程的轉(zhuǎn)化,考查參數(shù)方程的運(yùn)用,考查參數(shù)的幾何意義,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,+∞) | B. | (-1,1) | C. | [-1,1] | D. | (-∞,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 28 | B. | 23 | C. | 18 | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i>8 | B. | i>7 | C. | i>6 | D. | i>5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com