在三棱錐S―ABC中,△ABC是邊長(zhǎng)為4的正三角形,SB=,SA=SC=,M、N分別為AB、SB的中點(diǎn)。

   (I)證明:平面SAC⊥平面ABC;

   (II)求MN與平面SBC所成角的正弦值。

解:(I)取AC的中點(diǎn)O,連結(jié)SO,BO

    ∵SA=SC。

∴SO⊥AC。

在等腰△SAC中,

,

在正△ABC中,BO=

∴在△SOB中,SB=

∴SO2+BO2=SB2

∴SO⊥OB,又AC∩BO=0,                                                             

∴SO⊥面ABC                                                                                  

又SO面SAC

∴面SAC⊥面ABC。                                                                        

   (II)以O(shè)為原點(diǎn),分別以O(shè)A。OB,OS為x軸,y軸,z軸建立坐標(biāo)系。

          

設(shè)平面SBC的法向量為

                                               

                                                                                       

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為邊長(zhǎng)為1的等邊三角形,∠BAC=90°,O為BC中點(diǎn).
(Ⅰ)證明:SO⊥平面ABC;
(Ⅱ)證明:SA⊥BC;
(Ⅲ)求三棱錐S-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為等邊三角形,∠BAC=90°,O為BC中點(diǎn).
(Ⅰ)證明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB⊥底面ABC,且∠ASB=∠ABC=90°,AS=SB=2,AC=2
3


(Ⅰ)求證SA⊥SC;
(Ⅱ)在平面幾何中,推導(dǎo)三角形內(nèi)切圓的半徑公式r=
2S
l
(其中l(wèi)是三角形的周長(zhǎng),S是三角形的面積),常用如下方法(如右圖):
①以內(nèi)切圓的圓心O為頂點(diǎn),將三角形ABC分割成三個(gè)小三角形:△OAB,△OAC,△OB精英家教網(wǎng)C.
②設(shè)△ABC三邊長(zhǎng)分別為a,b,c.由S△ABC=S△OBC+S△OAC+S△OAB,
S=
1
2
ar+
1
2
br+
1
2
cr
=
1
2
lr
,則r=
2S
l

類比上述方法,請(qǐng)給出四面體內(nèi)切球半徑的計(jì)算公式(不要求說明類比過程),并利用該公式求出三棱錐S-ABC內(nèi)切球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,SA=AB=BC=AC=
2
SB=
2
SC
,O為BC中點(diǎn).
(1)求證:SO⊥平面ABC
(2)在線段AB上是否存在一點(diǎn)E,使二面角B-SC-E的平面角的余弦值為
15
5
?若存在,確定E點(diǎn)位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐S-ABC中,側(cè)棱SC⊥平面SAB,SA⊥BC,側(cè)面△SAB,△SBC,△SAC的面積分別為1,
3
2
,3,則此三棱錐的外接球的表面積為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案