已知點(0,-)是中心在原點,長軸在x軸上的橢圓的一個頂點,離心率為,橢圓的左右焦點分別為F1F2

(Ⅰ)求橢圓方程;

(Ⅱ)點M在橢圓上,求ΔMF1F2面積的最大值;

(Ⅲ)試探究橢圓上是否存在一點P,使,若存在,請求出點P的坐標;若不存在,請說明理由.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給出下列四個結(jié)論:
①在△ABC中,∠A>∠B是sinA>sinB的充要條件;
②某企業(yè)有職工150人,其中高級職稱15人,中級職稱45人,一般職員90人,若用分層抽樣的方法抽出一個容量為30的樣本,則一般職員應(yīng)抽出20人;
③如果函數(shù)f(x)對任意的x∈R都滿足f(x)=-f(2+x),則函數(shù)f(x)是周期函數(shù);
④已知點(
π
4
,0)和直線x=
π
2
分別是函數(shù)y=sin(ωx+φ)(ω>0)圖象的一個對稱中心和一條對稱軸,則ω的最小值為2;其中正確結(jié)論的序號是
 
.(填上所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平行六面體ABCD-A1B1C1D1中,點E是上底面A1B1C1D1(包括邊界)內(nèi)的任一點,若
AE
=x
AA1
+y
AB
+z
AD
,則x,y,z滿足的關(guān)系式為:
x=1,0≤y≤1,0≤z≤1
x=1,0≤y≤1,0≤z≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列幾個命題:①若
a
b
-
c
都是非零向量,則“
a
b
=
a
c
”是“
a
⊥(
b
-
c
)
”的充要條件;②已知等腰△ABC的腰為底的2倍,則頂角A的正切值是
15
7
;③在平面直角坐標系xoy中,四邊形ABCD的邊AB∥DC,AD∥BC,已知點A(-2,0),B(6,8),C(8,6),則D點的坐標為(0,-1);④設(shè)
a
,
b
,
c
為同一平面內(nèi)具有相同起點的任意三個非零向量,且滿足
a
b
不共線,
a
c
,|
a
|=|
c
|,則|
b
c
|的值一定等于以
a
,
b
為鄰邊的平行四邊形的面積.其中正確命題的序號是
 
.(寫出全部正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(不等式選做題)不等式|
x+1
x-1
|≥1
的解集是
(-∞,0]
(-∞,0]

B.(幾何證明選做題) 如圖,以AB=4為直徑的圓與△ABC的兩邊分別交于E,F(xiàn)兩點,∠ACB=60°,則EF=
2
2

C.(坐標系與參數(shù)方程選做題) 在極坐標中,已知點P為方程ρ(cosθ+sinθ)=1所表示的曲線上一動點,Q(2,
π
3
),則|PQ|的最小值為
6
2
6
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,已知點A ( 
1
2
 , 0 )
,點B在直線l:x=-
1
2
上運動,過點B與l垂直的直線和AB的中垂線相交于點M.
(Ⅰ)求動點M的軌跡E的方程;
(Ⅱ)設(shè)點P是軌跡E上的動點,點R,N在y軸上,圓C:
x=1+cosθ
y=sinθ     
(θ為參數(shù))內(nèi)切于△PRN,求△PRN的面積的最小值.

查看答案和解析>>

同步練習冊答案