11.某市家庭煤氣的使用量xcm3和燃?xì)赓M(fèi)f(x)(元)滿足關(guān)系$f(x)=\left\{\begin{array}{l}C,0<x≤A\\ C+B({x-A}),x>A\end{array}\right.$,已知某家庭今年前三個(gè)月的燃?xì)赓M(fèi)如表:
 月份 用氣量煤氣費(fèi)
 一月份 4m3 4元
 二月份 25m3 14元
 三月份35m3 19元
若四月份該家庭使用了20cm3的煤氣,則其燃?xì)赓M(fèi)為11.5元.

分析 根據(jù)待定系數(shù)法求出A、B、C的值,求出f(x)的表達(dá)式,從而求出f(20)的值即可.

解答 解:由題意得:C=4,
將(25,14),(35,19)代入f(x)=4+B(x-A),得:$\left\{\begin{array}{l}{4+B(25-A)=14}\\{4+B(35-A)=19}\end{array}\right.$
解得A=5,B=$\frac{1}{2}$,
∴f(x)=$\left\{\begin{array}{l}{4,0<x≤5}\\{4+\frac{1}{2}(x-5),x>5}\end{array}\right.$,
故x=20時(shí):f(20)=11.5元,
故答案為11.5元.

點(diǎn)評(píng) 本題考查了求函數(shù)的解析式問(wèn)題,考查函數(shù)求值問(wèn)題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.過(guò)點(diǎn)(1,2)且與直線2x+y-10=0垂直的直線方程是x-2y+3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.一直線l過(guò)直線l1:3x-y=3和直線l2:x-2y=2的交點(diǎn)P,且與直線l3:x-y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓心在x正半軸上的半徑為$\sqrt{2}$的圓C相切,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.過(guò)點(diǎn)C(0,$\sqrt{2}$)的橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,橢圓與x軸交于兩點(diǎn)A(a,0),B(-a,0),過(guò)點(diǎn)C的直線l與橢圓交于另一點(diǎn)D,并與x軸交于點(diǎn)P,直線AC與BD交于點(diǎn)Q.
(1)求橢圓的方程;
(2)當(dāng)直線l過(guò)橢圓右焦點(diǎn)時(shí),求線段CD的長(zhǎng);
(3)當(dāng)點(diǎn)P異于點(diǎn)B時(shí),求證:$\overrightarrow{OP}$•$\overrightarrow{OQ}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知命題p:x2+2mx+(4m-3)>0的解集為R,命題q:m+$\frac{1}{m-2}$的最小值為4,如果p與q只有一個(gè)真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)過(guò)曲線f(x)=-ex-x(e為自然對(duì)數(shù)的底數(shù))上的任意一點(diǎn)的切線l1,總存在過(guò)曲線g(x)=mx-3sinx上的一點(diǎn)處的切線l2,使l1⊥l2,則m的取值范圍為[-2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在四棱錐A-BCDE中,底面BCDE是∠BCD=90°的梯形,CD∥BE,AB⊥底面BCDE,BE=4AB=2BC=2CD,點(diǎn)F為AE的中點(diǎn).
(1)求證:FD∥平面ABC;
(2)求異面直線AC與DE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知等差數(shù)列{an}的首項(xiàng)為c,公差為d,等比數(shù)列{bn}的首項(xiàng)為d,公比為c,其中c,d∈Z,且a1<b1<a2
b2<a3
(1)求證:0<c<d,并由b2<a3推導(dǎo)c的值;
(2)若數(shù)列{an}共有3n項(xiàng),前n項(xiàng)的和為A,其后的n項(xiàng)的和為B,再其后的n項(xiàng)的和為C,求$\frac{{B}^{2}-AC}{(A-C)^{2}}$的比值.
(3)若數(shù)列{bn}的前n項(xiàng),前2n項(xiàng)、前3n項(xiàng)的和分別為D,G,H,試用含字母D,G的式子來(lái)表示H(即H=f(D,G),且不含字母d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.計(jì)算log324-log38的值為1.

查看答案和解析>>

同步練習(xí)冊(cè)答案