【題目】如圖,在等腰梯形ABCD中,AB=2,CD=4,BC= ,點(diǎn)E,F(xiàn)分別為AD,BC的中點(diǎn).如果對(duì)于常數(shù)λ,在ABCD的四條邊上,有且只有8個(gè)不同的點(diǎn)P使得 =λ成立,那么實(shí)數(shù)λ的取值范圍為 .
【答案】(﹣ ,﹣ )
【解析】解:以DC所在直線為x軸,DC的中垂線為y軸建立平面直角坐標(biāo)系,
則梯形的高為 =2,∴A(﹣1,2),B(1,2),C(2,0),D(﹣2,0),∴E(﹣ ,1),F(xiàn)( ,1).
①當(dāng)P在DC上時(shí),設(shè)P(x,0)(﹣2≤x≤2),則 =(﹣ ﹣x,1) =( ,1).
于是 =(﹣ ﹣x)( ﹣x)+1=x2﹣ =λ,
∴當(dāng)λ=﹣ 時(shí),方程有一解,當(dāng)﹣ <λ≤ 時(shí),λ有兩解;
②當(dāng)P在AB上時(shí),設(shè)P(x,2)(﹣1≤x≤1),則 =(﹣ ﹣x,﹣1) =( ,﹣1).
于是 =(﹣ ﹣x)( ﹣x)+1=x2﹣ =λ,
∴當(dāng)λ=﹣ 時(shí),方程有一解,當(dāng)﹣ <λ≤﹣ 時(shí),λ有兩解;
③當(dāng)P在AD上時(shí),直線AD方程為y=2x+4,
設(shè)P(x,2x+4)(﹣2<x<﹣1),則 =(﹣ ﹣x,﹣2x﹣3) =( ,﹣2x﹣3).
于是 =(﹣ ﹣x)( ﹣x)+(﹣2x﹣3)2=5x2+12x+ =λ.
∴當(dāng)λ=﹣ 或﹣ <λ< 時(shí),方程有一解,當(dāng)﹣ ﹣ 時(shí),方程有兩解;
④當(dāng)P在BC上時(shí),直線BC的方程為y=﹣2x+4,
設(shè)P(x,﹣2x+4)(1<x<2),則 =(﹣ ﹣x,2x﹣3) =( ,2x﹣3).
于是 =(﹣ ﹣x)( ﹣x)+(2x﹣3)2=5x2﹣12x+ =λ.
∴當(dāng)λ=﹣ 或﹣ <λ< 時(shí),方程有一解,當(dāng)﹣ ﹣ 時(shí),方程有兩解;
綜上,若使梯形上有8個(gè)不同的點(diǎn)P滿足 =λ成立,
則λ的取值范圍是(﹣ , ]∩(﹣ ,﹣ ]∩(﹣ ,﹣ )∩(﹣ ,﹣ )=(﹣ ,﹣ ).
所以答案是:(﹣ ,﹣ ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,設(shè)直線過點(diǎn)A( , ),B(3, ),且直線與曲線C:ρ=2rsinθ(r>0)有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)r的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項(xiàng)和為,
且,
(1)求數(shù)列的通項(xiàng)公式.
(2)設(shè)數(shù)列滿足,
①求數(shù)列的通項(xiàng)公式;
②是否存在正整數(shù),使得,,成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AB=2,CD=4,BC= ,點(diǎn)E,F(xiàn)分別為AD,BC的中點(diǎn).如果對(duì)于常數(shù)λ,在ABCD的四條邊上,有且只有8個(gè)不同的點(diǎn)P使得 =λ成立,那么實(shí)數(shù)λ的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在圓上任取一點(diǎn),過點(diǎn)作軸的垂線段,為垂足.,當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),
(1)求點(diǎn)的軌跡的方程;
(2) 若,直線交曲線于、兩點(diǎn)(點(diǎn)、與點(diǎn)不重合),且滿足.為坐標(biāo)原點(diǎn),點(diǎn)滿足,證明直線過定點(diǎn),并求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為.在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標(biāo)方程和直線普通方程;
(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),函數(shù) ,若對(duì)所有的總存在,使得成立,則實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,直線y= x為曲線y=f(x)的切線(e為自然對(duì)數(shù)的底數(shù)).
(1)求實(shí)數(shù)a的值;
(2)用min{m,n}表示m,n中的最小值,設(shè)函數(shù)g(x)=min{f(x),x﹣ }(x>0),若函數(shù)h(x)=g(x)﹣cx2為增函數(shù),求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C,D四點(diǎn)在同一圓上,BC與AD的延長(zhǎng)線交于點(diǎn)E,點(diǎn)F在BA的延長(zhǎng)線上.
(1)若 = , =1,求 的值;
(2)若EF2=FAFB,證明:EF∥CD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com