函數(shù)y=2sinx的導(dǎo)數(shù)y′=( 。
A.2cosxB.-2cosxC.cosxD.-cosx
∵y=2sinx,
∴y′=2cosx.
故選:A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

近年來,某企業(yè)每年消耗電費(fèi)約24萬元,為了節(jié)能減排,決定安裝一個可使用15年的太陽能供電設(shè)備接入本企業(yè)電網(wǎng),安裝這種供電設(shè)備的工本費(fèi)(單位:萬元)與太陽能電池板的面積(單位:平方米)成正比,比例系數(shù)約為0.5.為了保證正常用電,安裝后采用太陽能和電能互補(bǔ)供電的模式.假設(shè)在此模式下,安裝后該企業(yè)每年消耗的電費(fèi)(單位:萬元)與安裝的這種太陽能電池板的面積(單位:平方米)之間的函數(shù)關(guān)系是為常數(shù)).記為該村安裝這種太陽能供電設(shè)備的費(fèi)用與該村15年共將消耗的電費(fèi)之和.
(1)試解釋的實(shí)際意義,并建立關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)為多少平方米時,取得最小值?最小值是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是二次函數(shù),方程有兩個相等的實(shí)根,且,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f1(x)=sinx-cosx,fn+1(x)是fn(x)的導(dǎo)函數(shù),即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,則f2012(x)=( 。
A.sinx+cosxB.sinx-cosxC.-sinx+cosxD.-sinx-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)為偶函數(shù),且f′(x)存在,則f′(多)=( 。
A.1B.-1C.0D.-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)=x2+2xf′(1),則f′(0)等于( 。
A.0B.-4C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知可導(dǎo)函數(shù)f(x)(x∈R)的導(dǎo)函數(shù)f′(x)滿足f′(x)>f(x),則不等式ef(x)>f(1)ex的解集是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=-cosx+ex,則f′(1)的值為(  )
A.sin1-eB.e-sin1C.-e-sin1D.e+sin1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)=cosx+
π
2
,則f′(
π
2
)=( 。
A.-1B.-1+
π
2
C.1D.
π
2

查看答案和解析>>

同步練習(xí)冊答案