(Ⅰ)解不等式f(x)≤1;
(Ⅱ)證明:當(dāng)a≥1時,函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)函數(shù).
20.本小題主要考查不等式的解法、函數(shù)的單調(diào)性等基本知識,分類討論的數(shù)學(xué)思想方法和運算、推理能力.
(Ⅰ)解:不等式f(x)≤1即≤1+ax,
由此得1≤1+ax,即ax≥0,其中常數(shù)a>0,
所以,原不等式等價于
即
所以,當(dāng)0<a<1時,所給不等式的解集為{x|0≤x≤};
當(dāng)a≥1時,所給不等式的解集為{x|x≥0}.
(Ⅱ)證明:在區(qū)間[0,+∞)上任取x1,x2使得 x1<x2.
f(x1)-f(x2)=--a(x1-x2)
=-a(x1-x2)
=(x1-x2)(-a).
∵<1,且a≥1,
∴-a<0.
又 x1-x2<0,
∴f(x1)-f(x2)>0,
即 f(x1)>f(x2).
所以,當(dāng)a≥1時,函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)遞減函數(shù).
科目:高中數(shù)學(xué) 來源:2014屆河南省原名校聯(lián)盟高三上學(xué)期第一次摸底考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)f(x)=-sin(2x-).
(I)求函數(shù)f(x)的最大值和最小值;
(Ⅱ)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,c=3,f()=,若,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三第四次(4月)周測理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)f(x)=sin(ωx+),其中ω>0,||<,若coscos-sinsin =0,且圖象的一條對稱軸離一個對稱中心的最近距離是.
(1)求函數(shù)f(x)的解析式;
(2)若A,B,C是△ABC的三個內(nèi)角,且f(A)=-1,求sinB+sinC的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆福建省高二第四學(xué)段模塊考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知實數(shù)a滿足0<a≤2,a≠1,設(shè)函數(shù)f (x)=x3-x2+ax.
(Ⅰ)當(dāng)a=2時,求f (x)的極小值;
(Ⅱ)若函數(shù)g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的極小值點與f (x)的極小值點相同.求證:g(x)的極大值小于等于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年陜西省高三適應(yīng)性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知向量m=(cosx,sinx),n=(cosx,cosx)(x∈R),設(shè)函數(shù)f(x)=m·n
(1)求 f(x)的解析式,并求最小正周期.
(2)若函數(shù) g(x)的圖像是由函數(shù) f(x)的圖像向右平移個單位得到的,求g(x)的最大值及使g(x)取得最大值時x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省商丘市高三第二次模擬考試數(shù)學(xué)理卷 題型:選擇題
設(shè)函數(shù)f(x)=(sinx-cosx)(0≤x≤2011π),則函數(shù)f(x)的各極大值之和為
(A) (B) (C) (D)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com