設(shè)數(shù)列{an}滿足:a1+2a2+3a3+…+nan=2n(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=n2an,求數(shù)列{bn}的前n項(xiàng)和Sn
【答案】分析:(1)根據(jù)題意,可得a1+2a2+3a3++(n-1)an-1=2n-1,兩者相減,可得數(shù)列{an}的通項(xiàng)公式.
(2)根據(jù)題意,求出bn的通項(xiàng)公式,繼而求出數(shù)列{bn}的前n項(xiàng)和Sn
解答:解:(1)∵a1+2a2+3a3+…+nan=2n①,
∴n≥2時(shí),a1+2a2+3a3+…+(n-1)an-1=2n-1
①-②得nan=2n-1,an=(n≥2),在①中令n=1得a1=2,
∴an=
(2)∵bn=
則當(dāng)n=1時(shí),S1=2
∴當(dāng)n≥2時(shí),Sn=2+2×2+3×22+…+n×2n-1
則2Sn=4+2×22+3×23+…+(n-1)•2n-1+n•2n
相減得Sn=n•2n-(2+22+23+…+2n-1)=(n-1)2n+2(n≥2)
又S1=2,符合Sn的形式,
∴Sn=(n-1)•2n+2(n∈N*
點(diǎn)評:此題主要考查數(shù)列通項(xiàng)公式的求解和相關(guān)計(jì)算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=0,an+1=can3+1-c,n∈N*,其中c為實(shí)數(shù)
(1)證明:an∈[0,1]對任意n∈N*成立的充分必要條件是c∈[0,1];
(2)設(shè)0<c<
1
3
,證明:an≥1-(3c)n-1,n∈N*
(3)設(shè)0<c<
1
3
,證明:
a
2
1
+
a
2
2
+…
a
2
n
>n+1-
2
1-3c
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
4x+m
(m>0)
,當(dāng)x1、x2∈R且x1+x2=1時(shí),總有f(x1)+f(x2)=
1
2

(1)求m的值;
(2)設(shè)數(shù)列an滿足an=f(
0
n
)+f(
1
n
)+f(
2
n
)+…+f(
n
n
)
,求an的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=a,an+1=can+1-c,n∈N*其中a,c為實(shí)數(shù),且c≠0
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)設(shè)a=
1
2
,c=
1
2
,bn=n(1-an),n∈N*,求數(shù)列{bn}的前n項(xiàng)和Sn
(Ⅲ)若0<an<1對任意n∈N*成立,求實(shí)數(shù)c的范圍.(理科做,文科不做)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足:a1=
5
6
,且an=
1
3
an-1+
1
3
(n∈N*,n≥2)
(1)求證:數(shù)列{an-
1
2
}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)an;
(2)求{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)n∈N*,不等式組
x>0
y>0
y≤-nx+2n
所表示的平面區(qū)域?yàn)镈n,把Dn內(nèi)的整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn))按其到原點(diǎn)的距離從近到遠(yuǎn)排列成點(diǎn)列:(x1,y1),(x2,y2),…,(xn,yn
(1)求(xn,yn);
(2)設(shè)數(shù)列{an}滿足a1=x1,an=
y
2
n
(
1
y
2
1
+
1
y
2
2
+…+
1
y
2
n-1
),(n≥2)
,求證:n≥2時(shí),
an+1
(n+1
)
2
 
-
an
n
2
 
=
1
n
2
 
;
(3)在(2)的條件下,比較(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)
與4的大小.

查看答案和解析>>

同步練習(xí)冊答案