6.集合U={1,2,3,4,5,6},A={2,3},B={x∈Z|x2-6x+5<0},∁U(A∩B)=( 。
A.{1,5,6}B.{1,4,5,6}C.{2,3,4}D.{1,6}

分析 求出集合B中不等式的解集,找出解集中的整數(shù)解確定出B,求出A與B的交集,找出全集中不屬于并集的元素,即可得到答案.

解答 解:集合B中的不等式x2-6x+5<0,
變形得:(x-1)(x-5)<0,
解得:1<x<5,
∴B={2,3,4},
∵A={2,3},
∴A∩B={2,3},
∵集合U={1,2,3,4,5,6},
∴∁(A∩B)={1,4,5,6}.
故選:B.

點(diǎn)評(píng) 此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握交、并、補(bǔ)集的定義是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$\overrightarrow{PA}$+2$\overrightarrow{PB}$+3$\overrightarrow{PC}$=$\overrightarrow{0}$,則有(  )
A.$\overrightarrow{AP}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$B.$\overrightarrow{AP}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AP}$=-$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AC}$D.$\overrightarrow{AP}$=-$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^x}-1,x≤1}\\{1+{{log}_2}x,x>1}\end{array}}$,則函數(shù)f(x)的值域?yàn)椋?1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-ax,若f(1)=f(3),則a=4;f(x)≤0的解集為[-4,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(3,m).若($\overrightarrow a$+$\overrightarrow{2b$)∥(3$\overrightarrow b$-$\overrightarrow a$),則實(shí)數(shù)m的值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-3≥0}\\{x-y-3≤0}\\{0≤y≤m}\\{\;}\end{array}\right.$,若z=2x+y的最大值為9,則實(shí)數(shù)m的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在邊長為1的正方形ABCD中,且$\overrightarrow{BE}$=μ$\overrightarrow{AD}$,$\overrightarrow{CF}$=-μ$\overrightarrow{AB}$,則$\overrightarrow{AE}$•$\overrightarrow{AF}$=( 。
A.-1B.1C.2-2μD.2μ-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知復(fù)數(shù)z=$\frac{2i}{1+i}$,則z2等于(  )
A.1+iB.1-iC.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知不共線向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2,且向量$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$垂直,求$\overrightarrow{a}$與$\overrightarrow$的夾角θ的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案