15.若a>b>0,且ab=1,則下列不等式成立的是( 。
A.a+$\frac{1}$<$\frac{{2}^{a}}$<log2(a+b))B.$\frac{{2}^{a}}$<log2(a+b)<a+$\frac{1}$
C.a+$\frac{1}$<log2(a+b)<$\frac{{2}^{a}}$D.log2(a+b))<a+$\frac{1}$<$\frac{{2}^{a}}$

分析 a>b>0,且ab=1,可取a=2,b=$\frac{1}{2}$.代入計算即可得出大小關系.

解答 解:∵a>b>0,且ab=1,
∴可取a=2,b=$\frac{1}{2}$.
則$a+\frac{1}$=4,$\frac{{2}^{a}}$=$\frac{\frac{1}{2}}{{2}^{2}}$=$\frac{1}{8}$,log2(a+b)=$lo{g}_{2}(2+\frac{1}{2})$=$lo{g}_{2}\frac{5}{2}$∈(1,2),
∴$\frac{{2}^{a}}$<log2(a+b)<a+$\frac{1}$.
故選:B.

點評 本題考查了函數(shù)的單調(diào)性、不等式的解法與性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.設{an}和{bn}是兩個等差數(shù)列,記cn=max{b1-a1n,b2-a2n,…,bn-ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs這s個數(shù)中最大的數(shù).
(1)若an=n,bn=2n-1,求c1,c2,c3的值,并證明{cn}是等差數(shù)列;
(2)證明:或者對任意正數(shù)M,存在正整數(shù)m,當n≥m時,$\frac{{c}_{n}}{n}$>M;或者存在正整數(shù)m,使得cm,cm+1,cm+2,…是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知圓C過點(1,0),(0,$\sqrt{3}$),(-3,0),則圓C的方程為x2+y2+2x-3=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.幾位大學生響應國家的創(chuàng)業(yè)號召,開發(fā)了一款應用軟件.為激發(fā)大家學習數(shù)學的興趣,他們推出了“解數(shù)學題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是20,接下來的兩項是20,21,再接下來的三項是20,21,22,依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項和為2的整數(shù)冪.那么該款軟件的激活碼是( 。
A.440B.330C.220D.110

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知a∈R,i是虛數(shù)單位,若z=a+$\sqrt{3}$i,z•$\overline{z}$=4,則a=( 。
A.1或-1B.$\sqrt{7}$或-$\sqrt{7}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$ 是互相垂直的單位向量,若$\sqrt{3}$$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$  與$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$的夾角為60°,則實數(shù)λ的值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在平面直角坐標系xOy中,橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,焦距為2.
(Ⅰ)求橢圓E的方程.
(Ⅱ)如圖,動直線l:y=k1x-$\frac{\sqrt{3}}{2}$交橢圓E于A,B兩點,C是橢圓E上的一點,直線OC的斜率為k2,且k1k2=$\frac{\sqrt{2}}{4}$,M是線段OC延長線上一點,且|MC|:|AB|=2:3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點分別為S,T,求∠SOT的最大值,并求取得最大值時直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.從甲地到乙地要經(jīng)過3個十字路口,設各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$.
(Ⅰ)設X表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機變量X的分布列和數(shù)學期望;
(Ⅱ)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.線段AB長為60cm,現(xiàn)從該線段隨機取兩點,則兩點距離小于15cm的概率為$\frac{7}{16}$.

查看答案和解析>>

同步練習冊答案