如圖,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,側(cè)面PBC⊥底面ABCD,O是BC的中點.
(1)求證:PO⊥平面ABCD;
(2)求證:PA⊥BD
(3)若二面角D-PA-O的余弦值為,求PB的長.

【答案】分析:(1)由已知中,PB=PC,O是BC的中點,由等腰三角形“三線合一”的性質(zhì),可得PO⊥BC,結(jié)合側(cè)面PBC⊥底面ABCD,由面面垂直的性質(zhì)定理可得PO⊥平面ABCD;
(2)以點O為坐標(biāo)原點,建立空間直角坐標(biāo)系O-xyz,設(shè)OP=t,分別求出直線PA與BD的方向向量,根據(jù)兩個向量的數(shù)量積為0,即可得到PA⊥BD
(3)分別求出平面DPA與平面PAO的法向量,根據(jù)二面角D-PA-O的余弦值為,代入向量夾角公式,構(gòu)造關(guān)于t的方程,解方法即可得到PB的長.
解答:解:(1)證明:因為PB=PC,O是BC的中點,
所以PO⊥BC,
又側(cè)面PBC⊥底面ABCD,PO?平面PBC,
面PBC∩底面ABCD=BC,
所以PO⊥平面ABCD.…(4分)
(2)證明:以點O為坐標(biāo)原點,建立如圖空間直角坐標(biāo)系O-xyz,
設(shè)OP=t(t>0),則P(0,0,t),A(1,2,0),B(1,0,0),D(-1,1,0),
=(1,2,-t),=(-2,1,0),
因為=0,所以,
即PA⊥BD.…(8分)
(3)設(shè)平面PAD和平面PAO的法向量分別為=(a,b,c),=(x,y,z),
注意到=(-1,1,-t),=(1,2,0),=(0,0,t),
,令a=1得,=(1,-2,),
令y=-1得,=(2,-1,0),
所以cos60°===
解之得t=,所以PB==2為所求.…(12分)
點評:本題考查的知識點是用空間向量求平面間的夾角,直線與平面垂直的判定,向量語言表述線線的垂直、平行關(guān)系,其中(1)的關(guān)鍵是熟練掌握空間線線垂直、線面垂直及面面垂直之間的相互轉(zhuǎn)化,(2),(3)的關(guān)鍵是建立空間坐標(biāo)系,將空間中直線與平面之間的關(guān)系及夾角轉(zhuǎn)化為向量的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點,
求證:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
(1)證明:AE⊥PD;
(2)設(shè)AB=2,若H為線段PD上的動點,EH與平面PAD所成的最大角的正切值為
6
2
,求AP的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD的底面為菱形,∠BCD=60°,PD⊥AD.點E是BC邊上的中點.
(1)求證:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•崇明縣二模)如圖,已知四棱錐P-ABCD的底面ABCD為正方形,PA⊥平面ABCD,E、F分別是BC,PC的中點,AB=2,AP=2.
(1)求證:BD⊥平面PAC;
(2)求二面角E-AF-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉林二模)如圖,已知四棱錐P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,點M,N分別在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求證:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步練習(xí)冊答案