△ABC的一邊長為2,其對角的正弦為
12
,則其外接圓的半徑為
2
2
分析:利用正弦定理列出關(guān)系式,即可求出外接圓半徑.
解答:解:根據(jù)題意得:2R=
2
1
2
=4,
解得:R=2.
故答案為:2
點(diǎn)評:此題考查了正弦定理,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正三棱柱ABC-A1B1C1中,底面邊長和側(cè)棱長都為2,過底面上一邊AB作平面α,使α與底面ABC成60°的二面角,則正三棱柱被平面α截得的截面面積為
5
3
3
5
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•金山區(qū)二模)(1)設(shè)u、v為實(shí)數(shù),證明:u2+v2
(u+v)2
2
;(2)請先閱讀下列材料,然后根據(jù)要求回答問題.
材料:已知△LMN內(nèi)接于邊長為1的正三角形ABC,求證:△LMN中至少有一邊的長不小于
1
2

證明:線段AN、AL、BL、BM、CM、CN的長分別設(shè)為a1、a2、b1、b2、c1、c2,設(shè)LN、LM、MN的長為x、y、z,
x2=a12+a22-2a1a2cos60°=a12+a22-a1a2
同理:y2=b12+b22-b1b2,z2=c12+c22-c1c2,
x2+y2+z2=a12+a22+b12+b22+c12+c22-a1a2-b1b2-c1c2

請利用(1)的結(jié)論,把證明過程補(bǔ)充完整;
(3)已知n邊形A1′A2′A3′…An′內(nèi)接于邊長為1的正n邊形A1A2…An,(n≥4),思考會有相應(yīng)的什么結(jié)論?請?zhí)岢鲆粋的命題,并給與正確解答.
注意:第(3)題中所提問題單獨(dú)給分,解答也單獨(dú)給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知正三棱錐P—ABC底面邊長為2,高也是2,過棱錐底面的一邊作垂直于它所對棱的截面,求這截面的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河北省期中題 題型:填空題

在ΔABC中,∠A=90°,AB=AC=2,一邊長為2的正方形BDEF沿BC邊向右平行移,若移動過程中正方形和三角形的公共部分面積為S,則S的的最大值為(    )。

查看答案和解析>>

同步練習(xí)冊答案