在△ABC中,三邊a,b,c所對的角分別為A,B,C,若a2-b2=
3
bc,sinC=2
3
sinB,則角A=(  )
A、30°B、45°
C、150°D、135°
考點:正弦定理,余弦定理
專題:三角函數(shù)的求值,解三角形
分析:利用正弦定理化簡已知第二個等式,代入第一個等式,用b表示出a,再利用余弦定理表示出cosA,將各自的值代入計算求出cosA的值,即可確定出A的度數(shù).
解答: 解:利用正弦定理化簡sinC=2
3
sinB,得:c=2
3
b,
代入得:a2-b2=
3
bc=6b2,即a2=7b2
∴cosA=
b2+c2-a2
2bc
=
b2+12b2-7b2
4
3
b2
=
3
2
,
∴A=30°.
故選:A.
點評:此題考查了正弦、余弦定理,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖中陰影部分區(qū)域的面積S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且a=2,b=4,cosC=
3
4
,則sinB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序框圖,那么輸出S的值是( 。
A、2
B、
1
2
C、-1
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=4x上一點P到直線x=-1的距離與到點Q(2,2)的距離之差的最大值為( 。
A、3
B、
3
C、5
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x、y滿足條件
x≥0
y≥0
2x+y≤2
,那么x+3y的最大值是( 。
A、1B、3C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果實數(shù)x,y滿足等式y(tǒng)2=x,那么
y
x+1
的最大值是(  )
A、-1
B、1
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若平面向量
a
,
b
的夾角為60°,且|
a
|=2|
b
|,則( 。
A、
a
⊥(
b
+
a
B、
a
⊥(
b
-
a
C、
b
⊥(
b
+
a
D、
b
⊥(
b
-
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點,對于函數(shù)f(x)=asinx+bcosx,稱向量
OM
=(a,b)為函數(shù)f(x)的伴隨向量,同時稱函數(shù)f(x)為向量
OM
的伴隨函數(shù).
(Ⅰ)設(shè)函數(shù)g(x)=sin(
π
2
+x)+2cos(
π
2
-x),試求g(x)的伴隨向量
OM
的模;
(Ⅱ)記
ON
=(1,
3
)的伴隨函數(shù)為h(x),求使得關(guān)于x的方程h(x)-t=0在[0,
π
2
]內(nèi)恒有兩個不相等實數(shù)解的實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案