若C(-,0),D(,0),M是橢圓+y2=1上的動點,則的最小值為________.
1
由橢圓+y2=1知c2=4-1=3,
∴c=,
∴C,D是該橢圓的兩焦點.
令|MC|=r1,|MD|=r2,則r1+r2=2a=4,
.
又∵r1r2=4,
≥1.
當且僅當r1=r2時,上式等號成立.
的最小值為1.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點,若動點滿足
(1)求動點的軌跡曲線的方程;
(2)在曲線上求一點,使點到直線:的距離最。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的焦點為橢圓的右焦點,且橢圓的長軸長為4,M、N是橢圓上的的動點.
(1)求橢圓標準方程;
(2)設動點滿足:,直線的斜率之積為,證明:存在定點使
為定值,并求出的坐標;
(3)若在第一象限,且點關于原點對稱,垂直于軸于點,連接 并延長交橢圓于點,記直線的斜率分別為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)已知圓Ox2y2=3的半徑等于橢圓E=1(a>b>0)的短半軸長,橢圓E的右焦點F在圓O內,且到直線lyx的距離為,點M是直線l與圓O的公共點,設直線l交橢圓E于不同的兩點A(x1,y1),B(x2y2).

(1)求橢圓E的方程;
(2)求證:|AF|-|BF|=|BM|-|AM|.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線與橢圓有相同的焦點,且雙曲線的漸近線方程為,則雙曲線的方程為          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若雙曲線=1(a>0,b>0)與橢圓=1(m>b>0)的離心率之積大于1,則以a,b,m為邊長的三角形一定是(  )
A.等腰三角形B.直角三角形C.銳角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系xOy中,以橢圓=1(ab>0)上的一點A為圓心的圓與x軸相切于橢圓的一個焦點,與y軸相交于B、C兩點,若△ABC是銳角三角形,則該橢圓的離心率的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知圓過橢圓的右頂點和右焦點,圓心在此橢圓上,那么圓心到橢圓中心的距離是                 .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是橢圓上的一點,是焦點,且,則△的面積是               .

查看答案和解析>>

同步練習冊答案