精英家教網 > 高中數學 > 題目詳情

在△ABC中,數學公式,若O為△ABC的垂心,則數學公式的值為________.


分析:作出邊AC的垂線,利用余弦定理求出cosA的值,利用向量的數量積的幾何意義將向量的數量積表示成一個向量與另個向量的投影的乘積.
解答:∵O為△ABC的垂心,過O作OD⊥AC于D,
則cosA=
AD=ABcosA=,
==AC•AD=3×
故答案為:
點評:此題是個中檔題.本題考查向量的運算法則、向量數量積的幾何意義以及三角形的五心,以及學生分析解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源:2014屆安徽省高一下學期期中考試數學試卷(解析版) 題型:解答題

如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是AB、

PC的中點.

(1)求證:EF∥平面PAD;

(2)求證:EF⊥CD;

(3)若ÐPDA=45°求EF與平面ABCD所成的角的大。

【解析】本試題主要考查了線面平行和線線垂直的運用,以及線面角的求解的綜合運用

第一問中,利用連AC,設AC中點為O,連OF、OE在△PAC中,∵ F、O分別為PC、AC的中點   ∴ FO∥PA …………①在△ABC中,∵ E、O分別為AB、AC的中點 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二問中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO為EF在平面AC內的射影       ∴ CD⊥EF.

第三問中,若ÐPDA=45°,則 PA=AD=BC    ∵ EOBC,FOPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

證:連AC,設AC中點為O,連OF、OE(1)在△PAC中,∵ F、O分別為PC、AC的中點∴ FO∥PA …………①    在△ABC中,∵ E、O分別為AB、AC的中點  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO為EF在平面AC內的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,則 PA=AD=BC         ∵ EOBC,FOPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省南通市四星高中四校高三聯考數學試卷(解析版) 題型:解答題

在△ABC中,,若O為△ABC的垂心,則的值為   

查看答案和解析>>

科目:高中數學 來源:2011年湖北省潛江中學高三數學滾動訓練20(理科)(解析版) 題型:解答題

在△ABC中,,若O為△ABC的垂心,則的值為   

查看答案和解析>>

科目:高中數學 來源:江西省贛州十一縣(市)2010屆下學期高三期中聯考(理) 題型:填空題

 在△ABC中,,若O為△ABC的垂心,則的值為         .

 

查看答案和解析>>

同步練習冊答案