16.三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,△ABC是邊長(zhǎng)為3的正三角形,SC是球O的直徑,且SC=4,則此三棱錐的體積V=$\frac{3\sqrt{3}}{2}$.

分析 根據(jù)題意,利用截面圓的性質(zhì)即可求出點(diǎn)O到平面ABC的距離,進(jìn)而求出點(diǎn)S到平面ABC的距離,即可計(jì)算出三棱錐的體積.

解答 解:因?yàn)椤鰽BC是邊長(zhǎng)為3的正三角形,所以△ABC外接圓的半徑r=$\sqrt{3}$,
所以點(diǎn)O到平面ABC的距離d=$\sqrt{{R}^{2}-{r}^{2}}=1$,
SC為球O的直徑,點(diǎn)S到平面ABC的距離為2d=2,
此棱錐的體積為V=$\frac{1}{3}{s}_{ABC}×2d$=$\frac{1}{3}×\frac{\sqrt{3}}{4}×{3}^{2}×2=\frac{3\sqrt{3}}{2}$,
故答案為:$\frac{{3\sqrt{3}}}{2}$.

點(diǎn)評(píng) 題考查三棱錐的體積,考查學(xué)生的計(jì)算能力,求出點(diǎn)O到平面ABC的距離,進(jìn)而求出點(diǎn)S到平面ABC的距離是關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=2sin2x的最小正周期為(  )
A.B.C.D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,a=2,且(2+b)(sinA-sinB)=(c-b)sinC,則A的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.復(fù)數(shù)z=(m2+m-6)+(m2-3m+2)i,其中m∈R,則當(dāng)m為何值時(shí),
(1)z是實(shí)數(shù)?
(2)z是純虛數(shù)?
(3)如果復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于第二象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知△ABC內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若b=c,a2=2b2(1+sinA),則A=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=lnx-2ax(a∈R)有兩個(gè)不同的零點(diǎn),則a的取值范圍是$({0,\frac{1}{2e}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=sinωx+$\sqrt{3}cosωx({ω>0})$,當(dāng)f(x1)=f(x2)=2時(shí),|x1-x2|的最小值為2,給出下列結(jié)論,其中所有正確結(jié)論的個(gè)數(shù)為( 。
①f(0)=$\frac{π}{3}$;  
②當(dāng)x∈(0,1)時(shí),函數(shù)f(x)的最大值為2;  
③函數(shù)$f({x+\frac{1}{6}})$的圖象關(guān)于y軸對(duì)稱;  
④函數(shù)f(x)在(-1,0)上是增函數(shù).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,左、右焦點(diǎn)為F1,F(xiàn)2,點(diǎn)M為橢圓C上的任意一點(diǎn),$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}$的最小值為2.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)已知橢圓C的左、右頂點(diǎn)為A,B,點(diǎn)D(a,t)為第一象限內(nèi)的點(diǎn),過F2作以BD為直徑的圓的切線交直線AD于點(diǎn)P,求證:點(diǎn)P在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知x、y滿足$\left\{\begin{array}{l}{y≤x}\\{x+2y≤4}\\{y≥-2}\end{array}\right.$,求:
(1)t=x2+y2+2x-2y+2的最小值;
(2)t=|x-y+1|的最大值;
(3)t=$\frac{y+3}{x-1}$的取值范圍;
(4)t=xy的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案