分析 (1)連結(jié)BD,推導出PD⊥AC,BD⊥AC,從而AC⊥平面PBD,由此能證明AC⊥PB.
(2)推導出GE∥平面PBC,GF∥平面PBC,由此能證明平面PBC∥平面EFG.
解答 證明:(1)連結(jié)BD,
∵PD⊥平面ABCD,∴PD⊥AC,
∵底面ABCD是正方形,∴BD⊥AC,
又PD∩BD=D,∴AC⊥平面PBD,
∵PB?平面PBD,∴AC⊥PB.
(2)∵G、E分別為CD、PD的中點,∴CE∥PC,
又GE?平面PBC,PC?平面PBC,
∴GE∥平面PBC,
在正方形ABCD中,G、F分別為CD、AB的中點,
∴GF∥BC,又GF?平面PBC,BC?平面PBC,
∴GF∥平面PBC,
∵GF∩GE=G,∴平面PBC∥平面EFG.
點評 本題考查線線垂直的證明,考查面面平行的證明,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{64π}{3}+2\sqrt{3}$ | B. | $\frac{56π}{3}+4\sqrt{3}$ | C. | 18π | D. | 22π+4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,-4) | B. | (-4,1) | C. | (4,-1) | D. | (-4,-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 9 | B. | $\frac{3}{2}$ | C. | $\frac{4}{3}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{6}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ∅ | B. | {x|2<x<3} | C. | M | D. | {x|x≤3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com