【題目】如圖,正四棱錐PABCD中,底面邊長為2,側(cè)棱長為,MN分別為AB,BC的中點,以O為原點,射線OM,ON,OP分別為x軸、y軸、z軸的正方向建立空間直角坐標(biāo)系.若EF分別為PA,PB的中點,求A,B,C,D,E,F的坐標(biāo).

【答案】A(1,-1,0),B(1,1,0),C(-1,1,0),D(-1,-1,0), E,F.

【解析】試題分析:先確定各點坐標(biāo),再根據(jù)中點坐標(biāo)公式求解

試題解析:

∵正四棱錐PABCD中,底面邊長為2,側(cè)棱長為,

OB,OP2,

∴由上可得A(1,-1,0),B(1,1,0)C(1,1,0)D(1,-1,0),P(0,0,2)

又∵E,F分別為PA,PB的中點,

∴由中點坐標(biāo)公式可得E,F.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)證明:對任意的,函數(shù)的圖像與直線最多有一個交點;

(2)設(shè)函數(shù),若函數(shù)與函數(shù)的圖像至少有一個交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩袋中各裝有大小相同的小球9個,其中甲袋中紅色、黑色、白色小球的個數(shù)分別為2,34,乙袋中紅色、黑色、白色小球的個數(shù)均為3,某人用左右手分別從甲、乙兩袋中取球.

1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;

2)若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球(左右手依次各取兩球為兩次取球)的成功取法次數(shù)為隨機變量X,求X的分布列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為(2,2),函數(shù)g(x)f(x1)f(32x)

(1)求函數(shù)g(x)的定義域;

(2)f(x)是奇函數(shù)且在定義域上單調(diào)遞減,求不等式g(x)0的解集

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓 的左,右焦點分別為, .是橢圓軸上方的動點,且的周長為16.

1)求橢圓的方程;

2)設(shè)點三邊的距離均相等.

當(dāng)時,求點的坐標(biāo);

求證:點在定橢圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是半圓的直徑,是將半圓圓周四等分的三個分點

(1)從這5個點中任取3個點,求這3個點組成直角三角形的概率;

(2)在半圓內(nèi)任取一點,求的面積大于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分別是棱BC,CC1上的點(點D不同于點C),且AD⊥DE,F為B1C1的中點.

求證:(1)平面ADE⊥平面BCC1B1.

(2)直線A1F∥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017屆河北省衡水中學(xué)高三上學(xué)期六調(diào)】已知函數(shù),其中均為實數(shù),為自然對數(shù)的底數(shù).

(1)求函數(shù)的極值;

(2)設(shè),若對任意的恒成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(-x2+x-1)ex,其中e是自然對數(shù)的底數(shù).

(1)求曲線f(x)在點(1,f(1))處的切線;

(2)若方程f(x)=x3x2+m有3個不同的根,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案