已知函數(shù)
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)求f(x)在區(qū)間上的最大值與最小值.
【答案】分析:(Ⅰ)因,得角(-x)的終邊不在x軸上,即 -x≠kπ+,k是整數(shù).
(Ⅱ)化簡函數(shù)解析式到關于某個角的三角函數(shù)的形式,再利用函數(shù)在此區(qū)間上的單調性求出此函數(shù)的最大值和最小值.
解答:解:(Ⅰ)由題意,∴,∴,
故所求定義域為{}  (4分)
(Ⅱ)
==2cosx+2sinx=(9分)
,∴,(10分)
∴當時,f(x)min=0;
時,.(12分)
點評:本題考查利用誘導公式化簡三角函數(shù)式、求三角函數(shù)的定義域、值域.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù),)在上函數(shù)值總小于,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年山東省青島市高三3月統(tǒng)一質量檢測考試(第二套)理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)

1的最;

2當函數(shù)自變量的取值區(qū)間與對應函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間.,試問函數(shù)上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖北孝感高中高三年級九月調研考試理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)的定義域為,若上為增函數(shù),則稱為“一階比增函數(shù)”;若上為增函數(shù),則稱為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為,所有“二階比增函數(shù)”組成的集合記為.

(Ⅰ)已知函數(shù),若,求實數(shù)的取值范圍;

(Ⅱ)已知的部分函數(shù)值由下表給出,

 求證:

(Ⅲ)定義集合

請問:是否存在常數(shù),使得,,有成立?若存在,求出的最小值;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年甘肅省武威五中高一(下)3月月考數(shù)學試卷(解析版) 題型:解答題

已知函數(shù),編寫一個程序求函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=試畫出求函數(shù)值的程序框圖.

查看答案和解析>>

同步練習冊答案